Skip to main content

Leaf Composition of American Bur-Reed (Sparganium americanum Nutt.) to Determine Pesticide Mitigation Capability

Abstract

American bur-reed (Sparganium americanum Nutt.), a common aquatic plant in the middle and eastern United States and Canada, is often located in water-retaining drainage areas. The purpose of this study was to determine the leaf composition of S. americanum, paying attention to the cuticular waxes and the epidermis, and its ability to sorb pesticides. S. americanum leaves (n = 100) were collected in both early (June) and late (August) summer. Transverse sections of S. americanum were stained and studied with brightfield and fluorescence microscopy to estimate the structural and chemical nature of the leaf tissues cross sections. Mean total lipid content in early summer leaf samples (1.47 ± 0.83 mg mL−1) was significantly greater (alpha 0.05) than late summer leaves (0.15 ± 0.36 mg mL−1). In vitro analysis of epidermal peel permeability exposed to atrazine and malathion determined little to no sorption by the plant. Therefore, the structure of S. americanum leaves suggest this species does not have the capacity of sorbing these pesticides from runoff water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alfonso M, Yruela I, Almárcegui S, Torrado E, Pérez MA, Picorel R (2001) Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid desaturation. Planta 212(4):573–582

    CAS  Article  Google Scholar 

  2. Anderson B, Phillips B, Hunt J, Largay B, Shihadeh R, Tjeerdema R (2011) Pesticide and toxicity reduction using an integrated vegetated treatment system. Environ Toxicol Chem 30(5):1036–1043

    CAS  Article  Google Scholar 

  3. Bennett ER, Moore MT, Cooper CM, Smith S Jr (2000) Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bull Environ Contamin Toxicol 64:825–833

    CAS  Article  Google Scholar 

  4. Biggs AR (1984) Intracellular suberin: occurrence and detection in tree bark. IAWA J 5(3):243–248

    Article  Google Scholar 

  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    CAS  Article  Google Scholar 

  6. Buda GJ, Isaacson T, Matas AJ, Paolillo DJ, Rose JC (2009) Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy. Plant J 60(2):378–385

    CAS  Article  Google Scholar 

  7. Cain AJ (1947) The use of Nile blue in the examination of lipoids. Q J Microsc Sci 3(3):383–392

    Google Scholar 

  8. Cold Spring Harbor Laboratory (2009) PEM fixation buffer. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.rec11730

    Google Scholar 

  9. Elsaesser D, Blankenberg AB, Geist A, Mæhlum T, Schulz R (2011) Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: application of the toxic unit approach. Ecol Eng 37(6):955–962

    Article  Google Scholar 

  10. Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic Press, London, p 301

    Google Scholar 

  11. Gene Technology Access Centre (GTAC) (2018) Prepare a leaf epidermal peel. https://www.gtac.edu.au/wp-content/uploads/2016/01/Leaf-Epidermal-Peel_LabPreparation.pdf

  12. Gou JY, Yu XH, Liu CJ (2009) A hydroxycinnamoyl transferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc Natl Acad Sci USA 106:18855–18860

    CAS  Article  Google Scholar 

  13. Grover A, Agarwal M, Katiyar-Agarwal S, Sahi C, Agarwal S (2000) Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Curr Sci 79(5):557–559

    Google Scholar 

  14. Holloway PJ (1994) Plant cuticles: physicochemical characteristics and biosynthesis. In: Percy KE, Cape JN, Jagels R, Simpson CJ (eds) Air pollutants and the leaf cuticle. Springer, Berlin, pp 1–13

    Google Scholar 

  15. Ito Y, Cota-Sánchez JH (2014) Distribution and conservation status of Sparganium (Typhaceae) in the Canadian prairie provinces. Great Plains Res 24(2):119–125

    Article  Google Scholar 

  16. Kao JT, Titus JE, Zhu W-X (2003) Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands 23(4):979–987

    Article  Google Scholar 

  17. Kirkwood RC (1999) Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pest Sci 55(1):69–77

    CAS  Article  Google Scholar 

  18. Kolattukudy PE (1984) Biochemistry and function of cutin and suberin. Can J Bot 62(12):2918–2933

    CAS  Article  Google Scholar 

  19. Locke MA, Weaver MA, Zablotowicz RM, Steinriede RW, Bryson CT, Cullum RF (2011) Constructed wetlands as a component of the agricultural landscape: mitigation of herbicides in simulated runoff from upland drainage areas. Chemosphere 83(11):1532–1538

    CAS  Article  Google Scholar 

  20. Moore MT, Tyler HL, Locke MA (2013) Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw. and Sparganium americanum Nutt. Chemosphere 92(10):1307–1313

    CAS  Article  Google Scholar 

  21. Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13(5):236–246

    CAS  Article  Google Scholar 

  22. Refat NA, Ibrahim ZS, Moustafa GG, Sakamoto KQ, Ishizuka M, Fujita S (2008) The induction of cytochrome P450 1A1 by Sudan dyes. J Biochem Mol Toxicol 22:77–84

    CAS  Article  Google Scholar 

  23. Rittinger PA, Biggs AR, Peirson DR (1987) Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can J Bot 65(9):1886–1892

    Article  Google Scholar 

  24. Skoss JD (1955) Structure and composition of plant cuticle in relation to environmental factors and permeability. Bot Gaz 117:55–72

    Article  Google Scholar 

  25. Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144(1):419–431

    CAS  Article  Google Scholar 

  26. Somerville C (1991) Plant lipids: metabolism, mutants, and membranes. Science 252(5002):80–87

    CAS  Article  Google Scholar 

  27. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  28. Zee SY, O’Brien TP (1970) A special type of tracheary element associated with “xylem discontinuity” in the floral axis of wheat. Aust J Biol Sci 23(4):783–792

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Renee Russell for pesticide analyses. Mention of trade names and commercial products in this article are solely for providing specific information and do not imply recommendation or endorsement by the US Department of Agriculture (USDA). USDA is an equal opportunity employer and provider.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anfal Alsharekh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alsharekh, A., Swatzell, L.J. & Moore, M.T. Leaf Composition of American Bur-Reed (Sparganium americanum Nutt.) to Determine Pesticide Mitigation Capability. Bull Environ Contam Toxicol 100, 576–580 (2018). https://doi.org/10.1007/s00128-018-2298-4

Download citation

Keywords

  • Epidermal peel permeability
  • Atrazine
  • Malathion
  • Plant