Skip to main content

The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand

Abstract

In the field, aquatic organisms are exposed to multiple contaminants rather than to single compounds. It is therefore important to understand the toxic interactions of co-occurring substances in the environment. The aim of the study was to assess the effects of individual herbicides (atrazine, 2,4-D, alachlor and paraquat) that are commonly used in Thailand and their mixtures on Lemna minor. Plants were exposed to individual and binary mixtures for 7 days and the effects on plant growth rate were assesed based on frond area measurements. Experimental observations of mixture toxicity were compared with predictions based on single herbicide exposure data using concentration addition and independent action models. The single compound studies showed that paraquat and alachlor were most toxic to L. minor, followed by atrazine and then 2,4-D. For the mixtures, atrazine with 2,4-D appeared to act antagonistically, whereas alachlor and paraquat showed synergism.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ashton F, Bayer D (1976) Effects on slute transport and plant constituents. Academic Press, London

    Google Scholar 

  2. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573. https://doi.org/10.1021/es2034125

    CAS  Article  Google Scholar 

  3. Belden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274. https://doi.org/10.1002/etc.5620190917

    CAS  Article  Google Scholar 

  4. Belgers JDM, Aalderink GH, Van den Brink PJ (2009) Effects of four fungicides on nine non-target submersed macrophytes. Ecotoxicol Environ Saf 72:579–584. https://doi.org/10.1016/j.ecoenv.2008.06.005

    CAS  Article  Google Scholar 

  5. Belz RG, Cedergreen N, Sorensen H (2008) Hormesis in mixtures—Can it be predicted? Sci Total Environ 404(1):77–87

    CAS  Article  Google Scholar 

  6. Bisewska J, Sarnowska EI, Tukaj ZH (2012) Phytotoxicity and antioxidative enzymes of green microalga (Desmodesmus subspicatus) and duckweed (Lemna minor) exposed to herbicides MCPA, chloridazon and their mixtures. J Environ Sci Health B 47:814–822. https://doi.org/10.1080/03601234.2012.676443

    CAS  Article  Google Scholar 

  7. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    CAS  Article  Google Scholar 

  8. Boxall ABA, Fogg LA, Ashauer R, Bowles T, Sinclair C, Colyer A, Brain R (2013) Effects of repeated pulsed herbicide exposures on the growth of aquatic macrophytes. Environ Toxicol Chem 32(1):193–200

    CAS  Article  Google Scholar 

  9. Bradford WM, Mark EK, Shaw DR (1989) Barnyardgrass (Echinochloa crus-galli) control with grass and broadleaf weed herbicide combinations. Weed Sci 37:223–227

    Google Scholar 

  10. Brian R (1976) The history and classification of herbicides. Academic Press, London

    Google Scholar 

  11. Cavanaugh KJ, Durgan BR, Zollinger RK, Selberg WA. (1998) Herbicide and nonherbicide injury symptoms on spring wheat and barley. (BU-6967-S). From Extension Service

  12. Cedergreen N (2014) Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE. https://doi.org/10.1371/journal.pone.0096580

    Google Scholar 

  13. Cedergreen N, Kamper A, Streibig JC (2006) Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants. Aquat Toxicol 78(3):243–252. https://doi.org/10.1016/j.aquatox.2006.03.007

    CAS  Article  Google Scholar 

  14. Chi Z, O’Fallon JV, Chen S (2011). Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29(11):537–541. https://doi.org/10.1016/j.tibtech.2011.06.006

    CAS  Article  Google Scholar 

  15. Coelho ERC, Vazzoler H, Leal WP (2012) Using activated carbon for atrazine removal from public water supply. Engenharia Sanitaria E Ambiental 17(4):421–428

    Article  Google Scholar 

  16. Connick J, Simoneaux M, Jacqueline M (1982) Determination of (2,4-dichlorophenoxy) acetic acid and 2,6-dichlorobenonitrile in water by high performance liquid chromatography. Agric Food Chem 30:258–260

    CAS  Article  Google Scholar 

  17. Dennis N, Tiede K, Thompson H (2012) Repeated and multiple stress (exposure to pesticides) on aquatic organisms. EFSA 9(10):347E https://doi.org/10.2903/sp.efsa.2012.EN-347

    Google Scholar 

  18. Drost W, Matzke M, Backhaus T (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67(1):36–43. https://doi.org/10.1016/j.chemosphere.2006.10.018

    CAS  Article  Google Scholar 

  19. Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    CAS  Article  Google Scholar 

  20. Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Contam Toxicol 32(4):353–357

    CAS  Article  Google Scholar 

  21. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P et al (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56(1):13–32

    CAS  Article  Google Scholar 

  22. Fedtke C (1982) Biochemistry and physiology of herbicide action. Springer, New York

    Book  Google Scholar 

  23. Green J (1989) Herbicide antagonism at the whole plant-level. Weed technology 3:217–226

    CAS  Article  Google Scholar 

  24. Loewe S, Muischnek H (1926) Combinated effects I announcement—Implements to the problem. Naunyn-Schmiedebergs Archiv fur Experimentelle Pathologie Pharmakologie 114:313–326

    CAS  Article  Google Scholar 

  25. Machado SG, Robinson GA (1994) A direct, general approach based on isobolograms for assessing the joint action of drugs in pre-clinical experiments. Stat Med 13:2289–2309

    CAS  Article  Google Scholar 

  26. Michel A, Johnson RD, Duke SO, Scheffler BE (2004) Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: An improved ecotoxicological method. Environ Toxicol Chem 23(4):1074–1079

    CAS  Article  Google Scholar 

  27. Minton BW, Kurtz ME, Shaw DR (1989) Barnyardgrass (Echinochinochloa-crus-galli) control with grass and broadleaf weed herbicide combinations. Weed Sci 37(2):223–227

    CAS  Google Scholar 

  28. Norgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17(4):957–967

    CAS  Article  Google Scholar 

  29. OECD (2006) Test No. 221: Lemna sp. growth inhibition test. OECD Publishing, Paris

    Google Scholar 

  30. Panuwet P, Prapamontol T, Chantara S, Thavornyuthikarn P, Montesano MA, Whitehead RD, Barrd B (2008) Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai Province, Thailand. Sci Total Environ 407:655–668

    CAS  Article  Google Scholar 

  31. Panuwet P, Siriwong W, Prapamontol T, Ryan PB, Fiedler N, Robson MG, Barr DB (2012) Agricultural pesticide management in Thailand: status and population health risk. Environ Sci Policy 17:72–81

    CAS  Article  Google Scholar 

  32. Sangchan W, Bannwarth M, Ingwersen J, Hugenschmidt C, Schwadorf K, Thavornyutikarn P, Pansombat K, Streck T (2014) Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environ Monit Assess 186:1083–1099

    CAS  Article  Google Scholar 

  33. Scherholz ML, Curtis WR (2013) Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnol 13:39. https://doi.org/10.1186/1472-6750-13-39

    CAS  Article  Google Scholar 

  34. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33(2):419–448. https://doi.org/10.2134/jeq2004.0419

    CAS  Article  Google Scholar 

  35. Seibert H, Morchel S, Gulden M (2002) Factors influencing nominal effective concentrations of chemical compounds in vitro: medium protein concentration. Toxicol In Vitro 16(3):289–297. https://doi.org/10.1016/S0887-2333(02)00014-0

    CAS  Article  Google Scholar 

  36. Song YL (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56(2):106–113. https://doi.org/10.1111/jipb.12131

    CAS  Article  Google Scholar 

  37. Sorensen H, Cedergreen N, Skovgaard IM, Streibig JC (2007) An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments. Environ Ecol Stat 14(4):383–397. https://doi.org/10.1007/s10651-007-0022-

    Article  Google Scholar 

  38. Syberg K, Elleby A, Pedersen H, Cedergreen N, Forbes VE (2008) Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna. Ecotoxicol Environ Saf 69(3):428–436. https://doi.org/10.1016/j.ecoenv.2007.05.010

    CAS  Article  Google Scholar 

  39. Tomlin C (1997) Pesticide: handbooks manual, 11 edn. British Crop Protect Council, Farnham

    Google Scholar 

  40. Tsuzuki N (2006) Situation of pesticide management in Thailand. J Pest Sci 31(3):359–365

    Article  Google Scholar 

  41. Van Oorschot J (1976) Effects in relation to water and carbon dioxide exchange on plants. Academic press, London

    Google Scholar 

  42. Yeo RR (1967) Dissipation of diquat and paraquat and effects on aquatic weed and fish. Weeds 15:42–50

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Thai Royal Government, the Science and Technology Ministry of Thailand and the Environment Department, University of York and Indian Council of Agricultural Research. The authors thank to Chiang Mai Rajabhat University for proving the needed facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rungnapa Tagun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tagun, R., Boxall, A.B.A. The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand. Bull Environ Contam Toxicol 100, 516–523 (2018). https://doi.org/10.1007/s00128-018-2291-y

Download citation

Keywords

  • Herbicide mixtures
  • Lemna minor
  • Synergism
  • Antagonism