Advertisement

Testicular Oxidative Stress and Cellular Deformities in Clarias gariepinus (Burchell) from River Yamuna in Delhi Region, India

  • Anil K. Tyor
  • Kanika Pahwa
Article

Abstract

River Yamuna is under constant menace due to pollution levels beyond limit, ensuing chronic poisoning of aquatic biota. Induction of oxidative stress and cellular deformities is a common effect in fish. The present study aimed in assessing impact of environmental pollutants on gonad (testis) of Clarias gariepinus from Wazirabad barrage (entry site) and Okhla barrage (exit site) of river Yamuna in Delhi segment. Antioxidant enzymes assays viz. Super oxide dismutase (SOD), catalase (CAT) and ferric reducing antioxidant power (FRAP); thiobarbituric acid reactive substance assay (TBARS) for determining level of lipid peroxidation and histology for analysis of degenerative changes were employed as biomarkers. The results depicted signs of environmental contamination, hallmarked by significant increase (p < 0.001) in TBARs level (µmol/g wet tissue); significant decrease (p < 0.001) in SOD, CAT (U/mg protein) and FRAP value (U/mg tissue) in response to greater pollution at Okhla barrage as compared to Wazirabad barrage. Degenerative changes viz. unorganized seminiferous tubules, extensive vacuolization in germ cells, inflammatory lesions, greater vacant spaces and condensation of tubular cells prevailed in 75%, 85%, 80%, 80%, and 65% specimens respectively from Okhla barrage. Hence, the selected biomarkers highlighted the existence of greater prooxidative compounds at the exit site resulting in stressful condition for fish in river basin.

Keywords

Clarias gariepinus Yamuna Bio-markers Testis Oxidative stress Anti-oxidants 

Notes

Acknowledgements

The authors acknowledge the financial assistance provided by University Grant Commission, New Delhi. The authors are thankful to the Chairperson, Department of Zoology, Kurukshetra University, Kurukshetra, India, for providing laboratory and library facilities.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. Ameur WB, Lapuente J, Megdiche Y, Barhoumi B, Trabelsi S, Camps L, Serret J, López DR, Linares JG, Driss MR, Borràs M (2012) Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Mar Pollut Bull 64(2):241–251CrossRefGoogle Scholar
  3. Arrillo A, Melodia F (1991) Nitrite oxidation in Eisema foetida (Savigny): ecological implications. Funct Ecol 5:629–634CrossRefGoogle Scholar
  4. Banerjee BD, Seth V, Bhattacharya A (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107(1–3):33–47CrossRefGoogle Scholar
  5. Benzie IFF, Strain JJ (1996) Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239(1):70–76CrossRefGoogle Scholar
  6. Borkovic SS, Saponjic JS, Pavlovic SZ, Blagojevic DP, Milosevic SM et al (2005) The activity of antioxidant defence enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comp Biochem Physiol 141(4):366–374Google Scholar
  7. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  8. Carvalho CS, Bernusso VA, de Araújo HSS, Espíndola ELZ, Fernandes MN (2012) Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89(1):60–69CrossRefGoogle Scholar
  9. Central Pollution Control Board (CPCB) (2006) Report on water quality status of yamuna river 1999–2005Google Scholar
  10. Chandra AK, Chatterjee A, Ghosh R, Sarkar M, Chaube SK (2007) Chromium induced testicular impairment in relation to adrenocortical activities in adult albino rats. Reprod Toxicol 24(3–4):388–396CrossRefGoogle Scholar
  11. Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28(5):895–907CrossRefGoogle Scholar
  12. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187(3):201–210CrossRefGoogle Scholar
  13. Fatima M, Usmani N (2013) Histopathology and bioaccumulation of heavy metals (Cr, Ni and Pb) in fish (Channa striatus and Heteropneustes fossilis) tissue: a study for toxicity and ecological impacts. Pak J Biol Sci 16(9):412–420CrossRefGoogle Scholar
  14. Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264(14):7761–7764Google Scholar
  15. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724CrossRefGoogle Scholar
  16. Halliwell B, Gutteridge JM (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8(2):89–193CrossRefGoogle Scholar
  17. Huang GJ, Chen HJ, Chang YS, Sheu MJ, Lin YH (2007) Recombinant sporamin and its synthesized peptides with antioxidant activities in vitro. Bot Stud 48:133–140Google Scholar
  18. Karadag H, Fırat O, Fırat O (2014) Use of oxidative stress biomarkers in Cyprinus carpio L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bull Environ Contam Toxicol 92(3):289–293CrossRefGoogle Scholar
  19. Lakshmi D, Gopinath K, Jayanthy G, Anjum S, Prakash D, Sudhandiran G (2012) Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochem Res 37(9):1859–1867CrossRefGoogle Scholar
  20. Lal KK, Singh RK, Mohindra V, Singh B, Ponniah AG (2003) Genetic make up of exotic catfish Clarias gariepinus in India. Asian Fish Sci 16(3–4):229–234Google Scholar
  21. Livingstoone DR (2001) Contaminant stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42(8):656–666CrossRefGoogle Scholar
  22. Lopez-Lopez E, Sedeno-Diaz JE, Soto C, Favari L (2011) Responses of antioxidant enzymes, lipid peroxidation, and Na+/K+-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiol Biochem 37(3):511–522CrossRefGoogle Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  24. Lysiak JJ, Turner SD, Nguyen QA, Singbartl K, Ley K, Turner TT (2001) Essential role of neutrophils in germ cell-specific apoptosis following ischemia/reperfusion injury of the mouse testis. Biol Reprod 65(3):718–725CrossRefGoogle Scholar
  25. Malik D, Singh S, Thakur J, Singh RK, Kaur A, Nijhawan S (2014) Heavy metal pollution of the Yamuna river: an introspection. Int J Curr Microbiol Appl Sci 3(10):856–863Google Scholar
  26. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474CrossRefGoogle Scholar
  27. Nunes M, da Silva FW, Costa-Silva D, Wallau GL, Posser T, Franco JL (2015) Assessment of water pollution signs in the Brazilian Pampa biome using stress biomarkers in fish (Astyanax sp.). J Ecosyst 2015:1–7CrossRefGoogle Scholar
  28. Oliveira M, Ahmad I, Maria VL, Pacheco M, Santos MA (2010a) Antioxidant responses versus DNA damage and lipid peroxidation in golden grey mullet liver: a field study at Ria de Aveiro (Portugal). Arch Environ Contam Tox 59(3):454–463CrossRefGoogle Scholar
  29. Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309(1–3):105–115CrossRefGoogle Scholar
  30. Pearse AGE (1968) Histochemistry: theoritical and applied. Churchill, LondonGoogle Scholar
  31. Ruby SM, Idler DR, So YP (1987) Changes in plasma, liver and ovary vitellogenin in land-locked Atlantic salmon following exposure to sublethal cyanide. Arch Environ Contam Toxicol 16(4):507–510CrossRefGoogle Scholar
  32. Sehgal M, Garg A, Suresh R, Dagar P (2012) Heavy metal contamination in the Delhi segment of Yamuna basin. Environ Monit Assess 184(2):1181–1196CrossRefGoogle Scholar
  33. Sen I, Shandil A, Shrivastava VS (2011) Study for determination of heavy metals in fish species of the river Yamuna (Delhi) by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Adv Appl Sci Res 2(2):161–166Google Scholar
  34. Sokal RZ, Madding CE, Swerdloff RS (1985) Lead toxicity and the hypothalamicpitutary testicular axis. Biol Reprod 33(3):722–728CrossRefGoogle Scholar
  35. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29(12):1715–1733Google Scholar
  36. Tyor A, Pahwa K (2017) Pollutants induced oxidative stress, DNA damage and cellular deformities in Clarias gariepinus (Burchell), from river Ymauna in Delhi region, India. Bull Env Contam Toxicol 99(1):33–38CrossRefGoogle Scholar
  37. Vlahogianni T, Dassenakis M, Scoullos MJ, Valavanidis A (2007) Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull 54(9):1361–1371CrossRefGoogle Scholar
  38. Wheatley AR (2000) Some recent trends in the analytical chemistry of lipid peroxidation. Trends Anal Chem 19(10):617–628CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fish and Fisheries Laboratory, Department of ZoologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations