Skip to main content

Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS

Abstract

Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 103 to 4.4 × 103 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO2 to aquatic organisms (< 1 μg/L).

This is a preview of subscription content, access via your institution.

Fig. 1

(Source: Chiu and Westerhoff 2010). Error bars represent minimum and maximum values from duplicate measurements

Fig. 2
Fig. 3

References

  1. Baveye P, Laba M (2008) Aggregation and toxicology of titanium dioxide nanoparticles. Environ Health Perspect 116:A152–A152

    Article  Google Scholar 

  2. Boncagni NT, Otaegui JM, Warner E, Curran T, Ren JH, De Cortalezzi MMF (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699–7705

    CAS  Article  Google Scholar 

  3. Chiu C, Westerhoff P (2010) Trace organics in Arizona surface and wastewaters. Contaminants of emerging concern in the environment: ecological and human health considerations. ACS Publications, Washington, pp 81–117

    Book  Google Scholar 

  4. Chowdhury S, Alhooshani K, Karanfil T (2014) Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res 53:68–109

    CAS  Article  Google Scholar 

  5. Deng Y, Petersen EJ, Challis KE, Rabb SA, Holbrook RD, Ranville JF, Nelson BC, Xing B (2017) Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) plants. Environ Sci Technol 51(18):10615–10623

    CAS  Article  Google Scholar 

  6. Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286

    CAS  Article  Google Scholar 

  7. Donovan AR, Adams CD, Ma YF, Stephan C, Eichholz T, Shi HL (2016) Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144:148–153

    CAS  Article  Google Scholar 

  8. Gondikas AP, von der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the Old Danube Recreational Lake. Environ Sci Technol 48:5415–5422

    CAS  Article  Google Scholar 

  9. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    CAS  Article  Google Scholar 

  10. Holbrook RD, Motabar D, Quifiones O, Stanford B, Vanderford B, Moss D (2013) Titanium distribution in swimming pool water is dominated by dissolved species. Environ Pollut 181:68–74

    Article  Google Scholar 

  11. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    CAS  Article  Google Scholar 

  12. Iavicoli I, Leso V, Bergamaschi A (2012) Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater. https://doi.org/10.1155/2012/964381

    Google Scholar 

  13. Jovanovic B, Guzman HM (2014) Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef- building coral (Montastraea Faveolata). Environ Toxicol Chem 33:1346–1353

    CAS  Article  Google Scholar 

  14. Kim HA, Lee BT, Na SY, Kim KW, Ranville JF, Kim SO, Jo E, Eom IC (2017) Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS). Chemosphere 171:468–475

    CAS  Article  Google Scholar 

  15. Laborda F, Bolea E, Cepria G, Gomez MT, Jimenez MS, Perez-Arantegui J, Castillo JR (2016) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–32

    CAS  Article  Google Scholar 

  16. Lee S, Bi XY, Reed RB, Ranville JF, Herckes P, Westerhoff P (2014) Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 48:10291–10300

    CAS  Article  Google Scholar 

  17. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal At Spectrom 27:1131–1142

    CAS  Article  Google Scholar 

  18. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    CAS  Article  Google Scholar 

  19. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2012) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:4633–4633

    Article  Google Scholar 

  20. Praetorius A, Labille J, Scheringer M, Thill A, Hungerbuhler K, Bottero JY (2014) Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ Sci Technol 48:10690–10698

    CAS  Article  Google Scholar 

  21. Reed RB, Martin DP, Bednar AJ, Montaño MD, Westerhoff P, Ranville JF (2017) Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environ Sci Nano 4(1):69–77

    CAS  Article  Google Scholar 

  22. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233

    CAS  Article  Google Scholar 

  23. Shi HB, Magaye R, Castranova V, Zhao JS (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1), 15

    CAS  Article  Google Scholar 

  24. Telgmann L, Nguyen MTK, Shen L, Yargeau V, Hintelmann H, Metcalfe CD (2016) Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation. Anal Bioanal Chem 408(19):5169–5177

    CAS  Article  Google Scholar 

  25. Vidmar J, Milacic R, Scancar J (2017) Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchem J 132:391–400

    CAS  Article  Google Scholar 

  26. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care. Prod Environ Sci Technol 46:2242–2250

    CAS  Article  Google Scholar 

  27. Yang Y, Westerhoff P (2014) Presence in, and release of, nanomaterials from consumer products. Adv Exp Med Biol 811:1–17

    Article  Google Scholar 

  28. Yang Y, Reed R, Schoepf J, Hristovski K, Herckes P, Westerhoff P (2017) Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. Sci Total Environ 584:515–522

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the National Science Foundation (CBET 0847710) and the US Environmental Protection Agency through the STAR program (RD83558001). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF and USEPA. We gratefully acknowledge the use of facilities with the LeRoy Eyring Center for Solid State Science at Arizona State University. We would like to thank Dr. Heather Tugaoen for her help with sampling and Dr. Jared Schoepf for his help with TEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arjun K. Venkatesan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, A.K., Reed, R.B., Lee, S. et al. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. Bull Environ Contam Toxicol 100, 120–126 (2018). https://doi.org/10.1007/s00128-017-2216-1

Download citation

Keywords

  • Titanium dioxide
  • Nanoparticles
  • Single particle inductively coupled plasma–mass spectrometry (SP-ICP-MS)
  • Recreational waters
  • Exposure
  • River