Skip to main content

Influence of Interaction Between α-Fe2O3 Nanoparticles and Dissolved Fulvic Acid on the Physiological Responses in Synechococcus sp. PCC7942

Abstract

The ecotoxicity of α-Fe2O3 nanoparticles (NPs) and its interaction with a typical natural organic matter (NOM), fulvic acid (FA) on the physiological responses of Synechococcus sp. PCC7942 was studied. α-Fe2O3 NPs inhibited the algae growth at concentration higher than 10 mg L−1 and induced oxidative stress, indicated by enhanced antioxidant enzymes activities, elevated protein and sugar content. FA could efficiently recover cell growth and reduce antioxidant enzyme activities which induced by α-Fe2O3 NPs, indicating the toxicity of NPs was alleviated in the presence of FA. α-Fe2O3 NPs could form large aggregates coating on cell surface and inhibit cell growth. FTIR spectra verified FA interacted with α-Fe2O3 NPs through carboxyl groups, partly replaced the binding sites of α-Fe2O3 NPs on algal cell walls, thus reduced NPs aggregates coating on cell surface. This favors reducing the oxidative stress caused by direct contact and increasing light availability, thus mitigate NPs toxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmad NS, Radiman S, Yaacob WZW (2016) Aggregation and stability of Fe2O3: influence of humic acid concentration, Fe2O3 concentration and pH. In: Proceeding of the 4th international conference of fundamental and applied sciences 2016 (ICFAS2016), vol 1787

  2. Auffan M, Flahaut E, Thill A, Mouchet F, Carriere M, Gauthier L, Achouak W, Rose J, Wiesner MR, Bottero J-Y (2011) Ecotoxicology: Nanoparticle reactivity and living organisms. In: Nanoethics and nanotoxicology, Springer, Berlin, pp 325–357

    Chapter  Google Scholar 

  3. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101

    CAS  Article  Google Scholar 

  4. Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM (2009) The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 3(4):276–283

    CAS  Article  Google Scholar 

  5. Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001

    CAS  Article  Google Scholar 

  6. D’Souza L, Prabha Devi DS, Naik CG (2008) Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck). Anal Chem Insights 3:135

    Google Scholar 

  7. Demir V, Ates M, Arslan Z, Camas M, Celik F, Bogatu C, Can ŞS (2015) Influence of alpha and gamma-iron oxide nanoparticles on marine microalgae species. Bull Environ Contam Toxicol 95(6):752–757

    CAS  Article  Google Scholar 

  8. Deng X, Gao K, Sun J (2012) Physiological and biochemical responses of Synechococcus sp. PCC7942 to Irgarol 1051 and diuron. Aquat Toxicol 122–123(0):113–119

    Article  Google Scholar 

  9. Dickson D, Liu G, Li C, Tachiev G, Cai Y (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177

    CAS  Article  Google Scholar 

  10. El Badawy AM, Scheckel KG, Suidan M, Tolaymat T, 2012. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci Total Environ 429(Supplement C):325–331

    CAS  Article  Google Scholar 

  11. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290

    CAS  Article  Google Scholar 

  12. Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15(3):749–755

    CAS  Article  Google Scholar 

  13. Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170(2–3):525–530

    CAS  Article  Google Scholar 

  14. Kalive M, Zhang W, Chen Y, Capco D (2012) Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol 28(5):343–368

    CAS  Article  Google Scholar 

  15. Kaplan D, Christiaen D, Arad SM (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53(12):2953–2956

    CAS  Google Scholar 

  16. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    CAS  Article  Google Scholar 

  17. Kim K-T, Jang M-H, Kim J-Y, Xing B, Tanguay RL, Lee B-G, Kim SD (2012) Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter. Sci Total Environ 426(0):423–429

    CAS  Article  Google Scholar 

  18. Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    CAS  Article  Google Scholar 

  19. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467

    CAS  Article  Google Scholar 

  20. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Article  Google Scholar 

  21. Lin M, Tseng YH, Huang C-P (2015) Interactions between nano-TiO2 particles and algal cells at moderate particle concentration. Front Chem Sci Eng 9(2):242–257

    CAS  Article  Google Scholar 

  22. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    CAS  Article  Google Scholar 

  23. Mishra NP, Mishra RK, Singhal GS (1993) Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol 102(3):903–910

    CAS  Article  Google Scholar 

  24. Mohamed Z (2008) Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17(6):504–516

    CAS  Article  Google Scholar 

  25. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxide/hydroxides. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  26. Nason JA, McDowell SA, Callahan TW (2012) Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles. J Environ Monitor 14(7):1885–1892

    CAS  Article  Google Scholar 

  27. Palomino D, Stoll S (2013) Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems. J Nanopart Res 15(2):1428

    Article  Google Scholar 

  28. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144

    CAS  Article  Google Scholar 

  29. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, Hoboken

    Google Scholar 

  30. Tran N, Mir A, Mallik D et al (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed 5:277–283

    CAS  Google Scholar 

  31. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159(4):970–976

    Article  Google Scholar 

  32. Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040

    CAS  Article  Google Scholar 

  33. Zhou K, Hu Y, Zhang L, Yang K, Lin D, 2016. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Sci Rep 6

Download references

Acknowledgements

The authors are grateful for the financial support from Natural Science Foundation of Jiangsu Province (BK20140713) and China Postdoctoral Science Foundation Funded Project (No. 2015M571764), Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wang Changhai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, M., Chen, Y., Yan, Y. et al. Influence of Interaction Between α-Fe2O3 Nanoparticles and Dissolved Fulvic Acid on the Physiological Responses in Synechococcus sp. PCC7942. Bull Environ Contam Toxicol 99, 719–727 (2017). https://doi.org/10.1007/s00128-017-2199-y

Download citation

Keywords

  • Nanoparticles
  • α-Fe2O3
  • Synechococcus
  • Fulvic acid
  • Antioxidant enzymes
  • Surface coating