Effects of Long-Term Anthropogenic Disturbance on the Benthic Episammic Diatom Community of an Ancient, Tropical Lake

  • Andrew J. Bramburger
  • Paul B. Hamilton
  • G. Douglas Haffner
Article

Abstract

Habitat homogenization, nutrient enrichment and loss of biodiversity are broadly recognized as the consequences of human activity in aquatic systems. Diatoms (Bacillariophyceae) are frequently used in aquatic environmental assessment and impact monitoring, but in unique habitats dominated by endemic taxa, traditional approaches may not be appropriate. We examined the impacts of long term anthropogenic impacts upon the littoral episammic diatom community around the town of Soroako, located on Lake Matano, an ancient tropical lake. Lake Matano is located on central Sulawesi Island, Indonesia, and socio-economic conditions are typical of developing nations. Although differences in nutrient concentrations were undetectable with field-based spectroscopy approaches, mean Shannon diversity was decreased in association with proximity the town-site. However, mean ß-diversity was maintained despite several decades of shoreline modification at Soroako. Elevated abundances of early-successional diatom taxa in the disturbed area drove differences between areas immediately offshore of Soroako and those farther away. These findings suggest that increased physical disturbance and TSS loads around Soroako, rather than increased nutrient loading, influenced shifts in the diatom community. These results suggest that microscopy-based biomonitoring approaches are sensitive indicators of environmental modification that could be useful in areas where access to cutting-edge analytical equipment is limited.

Keywords

Diatoms Ancient lake Environmental assessment Disturbance Lake Matano 

References

  1. Bramburger A (2010). Mechanisms regulating the composition, structure and dynamics of biological communities: insights from freshwater diatom communities. ElectronicThesesandDissertations. p. 378. http://scholar.uwindsor.ca/etd/378
  2. Bramburger AJ, Haffner GD, Hamilton PB (2004). Examining the distributional patterns of the diatom flora of the Malili Lakes, Sulawesi, Indonesia. In: Poulin M. (ed) Proceedings of the 17th International Diatom Symposium, Ottawa, Canada. Biopress, Bristol, pp. 11–25Google Scholar
  3. Bramburger AJ, Haffner GD, Hamilton PB, Hinz F, Hehanussa PE (2006) An examination of species within the genus Surirella from the Malili Lakes, Sulawesi Island, Indonesia, with descriptions of 11 new taxa. Diatom Res 21:1–56CrossRefGoogle Scholar
  4. Bramburger AJ, Hamilton PB, Hehanussa PE, Haffner GD (2008) Processes regulating the community composition and relative abundance of taxa in the diatom communities of the Malili Lakes, Sulawesi Island, Indonesia. Hydrobiologia 615:215–224CrossRefGoogle Scholar
  5. Bramburger AJ, Hamilton PB, Haffner GD (2014). Effects of a simulated upwelling event on the littoral epilithic diatom community of an ancient tropical lake (Lake Matano, Sulawesi Island, Indonesia). Hydrobiologia 739:133–143CrossRefGoogle Scholar
  6. Dixit SS, Smol JP, Kingston JC, Charles DF (1992) Diatoms: powerful indicators of environmental change. Environ Sci Technol 26:22–33CrossRefGoogle Scholar
  7. Dixit SS, Smol JP, Charles DF, Hughes RM, Paulsen SG, Collins GB (1999) Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquatic Sci 56:131–152CrossRefGoogle Scholar
  8. Herder F, Nolte AW, Pfaender J, Schwarzer J, Hadiaty RK, Schliewen UK (2006). Adaptive radiation and hybridization in Wallace’s Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proc R Soc Lond B 273:2209–2217CrossRefGoogle Scholar
  9. Herlihy AT, Paulsen SG, Sickle JV, Stoddard JL, Hawkins CP, Yuan LL (2008) Striving for consistency in a national assessment: the challenges of applying a reference-condition approach at a continental scale. J North Am Benthol Soc 27:860–877CrossRefGoogle Scholar
  10. Hustedt F (1939) Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra. Archiv f Hydrobiol 16:1–155Google Scholar
  11. Hustedt F (1942) Süßwasser­Diatomeen des indomalayischen archipels und der Hawaiiï­Inseln. Nach dem material der Wallaceaï­Expedition. Int Rev der gesamten Hydrobiol Hydrogr 42:1–252CrossRefGoogle Scholar
  12. Kilroy C, Biggs BJ, Vyverman W (2007) Rules for macroorganisms applied to microorganisms: patterns of endemism in benthic freshwater diatoms. Oikos 116:550–564CrossRefGoogle Scholar
  13. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, p. 876Google Scholar
  14. Krammer K, Lange-Bertalot H (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, Jena, p. 596Google Scholar
  15. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, p. 576Google Scholar
  16. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, p. 437Google Scholar
  17. Population Explorer (2017). Pupulation explorer beta. https://populationexplorer.com. Accessed 10 Jan 2017
  18. Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291–315CrossRefGoogle Scholar
  19. Roy D, Kelly DW, Fransen CH, Heath DD, Haffner GD (2006) Evidence of small-scale vicariance in Caridina lanceolata (Decapoda: Atyidae) from the Malili Lakes, Sulawesi. Evol Ecol Res 8:1087–1099Google Scholar
  20. Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282CrossRefGoogle Scholar
  21. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. BioScience 52:891–904CrossRefGoogle Scholar
  22. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefGoogle Scholar
  23. Sonneman JA, Walsh CJ, Breen PF, Sharpe AK (2001) Effects of urbanization on streams of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshw Biol 46:553–565CrossRefGoogle Scholar
  24. Stevenson RJ, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 11–40CrossRefGoogle Scholar
  25. Stevenson RJ, Smol JP (2003) Use of algae in environmental assessments. In: Wehd JD, Sheath RG (eds) Freshwater algae in North America: classification and ecology. Academic Press, San Diego, pp 775–804CrossRefGoogle Scholar
  26. Stevenson RJ, Pan Y, Manoylov KM, Parker CA, Larsen DP, Herlihy AT (2008) Development of diatom indicators of ecological conditions for streams of the western US. J North Am Benthol Soc 27:1000–1016CrossRefGoogle Scholar
  27. Vaillant JJ, Haffner GD, Cristescu ME (2011) The ancient lakes of Indonesia: towards integrated research on speciation. Integr Comparat Biol 51:634–643CrossRefGoogle Scholar
  28. van Bemmelen RW (1970) The geology of Indonesia. 1, A. General geology of Indonesia and adjacent archipelagoes: the East Indies, inclusive of the British part of Borneo, the Malay Peninsula, the Philippine Islands, Eastern New Guinea, Christmas Island, and the Andaman-and Nicobar Islands. Nijhoff, The HagueGoogle Scholar
  29. Vanormelingen P, Verleyen E, Vyverman W (2008) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers Conserv 17:393–405CrossRefGoogle Scholar
  30. von Rintelen T, Wilson AB, Meyer A, Glaubrecht M (2004). Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc R Soc Lond B 271:2541–2549CrossRefGoogle Scholar
  31. Vyverman W (1991) Diatoms from Papua New Guinea. Bibliotheca Diatomol 22:1–224Google Scholar
  32. Wallace AR (1878) Tropical nature, and other essays. Macmillan and Company, LondonCrossRefGoogle Scholar
  33. Wallace AR (1902) Island life, or, the phenomena and causes of insular faunas and floras: including a revision and attempted solution of the problem of geological climates. Macmillan and Company, LondonGoogle Scholar
  34. Western D (2001). Human-modified ecosystems and future evolution. Proc Natl Acad Sci USA 98:5458–5465CrossRefGoogle Scholar
  35. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Andrew J. Bramburger
    • 1
    • 3
  • Paul B. Hamilton
    • 2
  • G. Douglas Haffner
    • 3
  1. 1.Natural Resources Research InstituteUniversity of Minnesota DuluthDuluthUSA
  2. 2.Research DivisionCanadian Museum of NatureOttawaCanada
  3. 3.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada

Personalised recommendations