Skip to main content

Influence of Sulfur on the Arsenic Phytoremediation Using Vallisneria natans (Lour.) Hara

Abstract

Influences of sulfur (S) on the accumulation and detoxification of arsenic (As) in Vallisneria natans (Lour.) Hara, an arsenic hyperaccumulating submerged aquatic plant, were investigated. At low sulfur levels (<20 mg/L), the thiols and As concentrations in the plant increased significantly with increasing sulfate nutrient supply. If sulfur levels were above 20 mg/L, the thiols and As concentrations in the plant did not increase further. There was a significant positive correlation between thiols and As in the plant. As(III) is the main form (>75%) present in the plant after exposure to As(V). Sulfur plays an important role in the arsenic translocation and detoxification, possibly through stimulating the synthesis of thiols and complexation of arsenite-phytochelatins. This suggests that addition of sulfur to the arsenic-contaminated water may provide a way to promote arsenic bioaccumulation in plants for phytoremediation of arsenic pollution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    CAS  Article  Google Scholar 

  2. Cai Y, Su J, Ma LQ (2004) Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environ Pollut 129:69–78

    CAS  Article  Google Scholar 

  3. Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara. Int J Phytoremediation 17:249–255

    CAS  Article  Google Scholar 

  4. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. Embo J 18:3325–3333

    CAS  Article  Google Scholar 

  5. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact 90:139–155

    CAS  Article  Google Scholar 

  6. Dhankher OP, Rosen BP, Mckinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    CAS  Article  Google Scholar 

  7. Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    CAS  Article  Google Scholar 

  8. Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    CAS  Article  Google Scholar 

  9. Hartley-Whitaker J, Ainsworth G, Vooijs RBW, Schat H (2001) Phytochelatins are involved in differential arsenate tolerance in Holcuslanatus. Plant Physiol 126:299–306

    CAS  Article  Google Scholar 

  10. Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202:138–148

    CAS  Article  Google Scholar 

  11. Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Lelie DVD, Mergeay M, Tervahauta AI, Romantschuk M (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  Google Scholar 

  12. Lafabrie C, Major KM, Major CS, Cebrian J (2011) Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis. Chemosphere 82:1393–1400

    CAS  Article  Google Scholar 

  13. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    CAS  Article  Google Scholar 

  14. McMahon PJ, Anderson JW (1998) Preferential allocation of sulphur into y-glutamylcysteinyl peptides in wheat plants grown at low sulphur nutrition in the presence of cadmium. Physiol Plant 104:440–448

    CAS  Article  Google Scholar 

  15. Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    CAS  Article  Google Scholar 

  16. Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    CAS  Article  Google Scholar 

  17. Oliveira LMD, Ma LQ, Santos JAG, Guilherme LRG, Lessl JT (2014) Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata (L.). Environ Pollut 184:187–192

    Article  Google Scholar 

  18. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    CAS  Article  Google Scholar 

  19. Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    CAS  Article  Google Scholar 

  20. Rama Devi S, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  Google Scholar 

  21. Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    CAS  Article  Google Scholar 

  22. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health. Arsenic epidemiology and drinking water standards. Science 296:2145–2146

    CAS  Article  Google Scholar 

  23. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and Antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    CAS  Article  Google Scholar 

  24. Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, Mcgrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  Article  Google Scholar 

  25. Xia Y, Liu J (2004) An overview on chronic arsenism via drinking water in PR China. Toxicology 198:25–29

    CAS  Article  Google Scholar 

  26. Xue P, Yan C (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176–1181

    CAS  Article  Google Scholar 

  27. Yu Y, Guo Y, Zhang J, Xie J, Zhu Y, Yan J, Wang B, Li Z (2017) A perspective of chronic low exposure of arsenic on non-working women: risk of hypertension. Sci Total Environ 580:69–73

    CAS  Article  Google Scholar 

  28. Zhang J, Zhao Q, Duan G, Huang Y (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    CAS  Article  Google Scholar 

  29. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, Mcgrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 41501343, 31671635, 31400374 and 51408214), Scientific Research Foundation of Hunan Provincial Education Department (Nos. 14B066 and 15C0534).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoliang Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Feng, T., Li, Z. et al. Influence of Sulfur on the Arsenic Phytoremediation Using Vallisneria natans (Lour.) Hara. Bull Environ Contam Toxicol 99, 411–414 (2017). https://doi.org/10.1007/s00128-017-2135-1

Download citation

Keywords

  • Submerged plant
  • Sulfur
  • Arsenic
  • Bioaccumulation
  • Detoxification