Skip to main content

Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei

Abstract

Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a “concentration-exposure-time” (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater. 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  2. Bhadha JH, Lang TA, Alvarez OM, Giurcanu MC, Johnson JV, Odero DC, Daroub SH (2014) Allelopathic effects of Pistia stratiotes and Lyngbya wollei Farlow ex Gomont on seed germination and root growth. Sustain Agric Res 3:121–130

    Article  Google Scholar 

  3. Bishop WM (2016) A Risk-based decision information system for selecting an algal management program (Doctoral dissertation, North Carolina State University)

  4. Bishop WM, Rodgers Jr JH (2011) Responses of Lyngbya magnifica Gardner to an algaecide exposure in the laboratory and field. Ecotoxicol Environ Saf 74:1832–1838

    CAS  Article  Google Scholar 

  5. Bishop WM, Rodgers JH Jr (2012) Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept. Arch Environ Contam Toxicol 62:403–410

    CAS  Article  Google Scholar 

  6. Bishop WM, Johnson BM, Rodgers JH Jr (2014) Comparative responses of target and non-target species to exposures of a copper-based algaecide. J Aquat Plant Manag 52:65–70

    Google Scholar 

  7. Bishop WM, Willis BE, Horton CT (2015) Affinity and Efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya wollei control in Lay Lake, AL. Environ Manag 55:983–990

    Article  Google Scholar 

  8. Briand J-F, Jacquet S, Bernard C, Humbert J-F (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34:361–377

    CAS  Article  Google Scholar 

  9. Cairns J, Pratt JR (1989) The scientific basis of bioassays. Hydrobiologia 188–189:5–20

    Article  Google Scholar 

  10. Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimson EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668

    CAS  Article  Google Scholar 

  11. Corradi MG, Gorbi G (1993) Chromium toxicity on two linked trophic levels. II. Morphophysiological effects on Scenedesmus acutus. Ecotoxicol Environ Saf 25:72–78

    CAS  Article  Google Scholar 

  12. Crist RH, Martin JR, Guptill PW, Eslinger JM, Crist DR (1990) Interaction of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Environ Sci Technol 24:337–342

    CAS  Article  Google Scholar 

  13. Foss AJ, Phlips EJ, Yilmaz M, Chapman A (2012) Characterization of paralytic shellfish toxins from Lyngbya wollei dominated mats collected from two Florida springs. Harmful Algae 16:98–107

    CAS  Article  Google Scholar 

  14. Hudon C, De Sève M, Cattaneo A (2014) Increasing occurrence of the benthic filamentous cyanobacterium Lyngbya wollei: a symptom of freshwater ecosystem degradation. Freshw Sci 33(2):606–618

    Article  Google Scholar 

  15. Kaduková J, Virčíková E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    Article  Google Scholar 

  16. Kiefer E, Sigg L, Schosseler P (1997) Chemical and spectroscopic characterization of algae surfaces. Environ Sci Technol 31:759–764

    CAS  Article  Google Scholar 

  17. Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green algae Scenedesmus subspicatus (Chlorophyta). J Phycol 33:596–601

    CAS  Article  Google Scholar 

  18. Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758

    Article  Google Scholar 

  19. Lewis PA, Klemm DJ, Lazorchak JM, Norberg-King TJ, Peltier TJ, Peltier WH, Heber MA (1994) USEPA Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms (Green alga, Selenastrum capricornutum, Growth 1003.0). 3rd ed. EPA/600.4–91/002, Cincinnati, OH

  20. Microsoft (2010) Microsoft Excel [computer software]. Redmond, WA

  21. Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJJ, SE Newell, Qin B, Scott JT (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222

    Article  Google Scholar 

  22. Schrader KK, Blevins WT (1993) Geosmin-producing species of Streptomyces and Lyngbya from aquaculture ponds. Can J Microbiol 39:834–840

    CAS  Article  Google Scholar 

  23. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    CAS  Article  Google Scholar 

  24. Speziale BJ, Dyck LA (1992) Comparative taxonomy of Lyngbya wollei Comb. Nov. (Cyanobacteria). J Phycol 28:693–706

    Article  Google Scholar 

  25. Stauber JL, Davies CM (2000) Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ Rev 8:255–301

    CAS  Article  Google Scholar 

  26. Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519

    CAS  Article  Google Scholar 

  27. Sunda WG, Huntsman SA (1998) Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Sci Total Environ 219:165–181

    CAS  Article  Google Scholar 

  28. Systat Software, Inc. (2014) SigmaPlot version 12.5, San Jose, CA

  29. Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    CAS  Article  Google Scholar 

  30. Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu+ 2 and Zn+ 2. Chemosphere 62:538–544

    CAS  Article  Google Scholar 

  31. Twiss MR, Welbourn PM, Schwartzel E (1993) Laboratory selection for copper tolerance in Scenedesmus acutus (Chlorophyceae). Can J Bot 71:333–338

    CAS  Article  Google Scholar 

  32. USEPA (1996) Microwave assisted acid digestion of siliceous and organically based matrices, method 3052. EPA SW-846, Ch. 3.2, US EPA. Washington, DC

  33. USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms (Green Alga, Selenastrum capricornutum, Growth 1003.0). 4th ed. EPA-821-R-02-012, Washington, DC 20460

  34. USEPA (2011) National pollutant discharge elimination system (NPDES). Pesticide general permit (PGP) for discharges from the application of pesticides. Washington, DC

  35. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316

    CAS  Article  Google Scholar 

  36. Vijayavel K, Sadowsky MJ, Ferguson JA, Kashian DR (2013) The establishment of the nuisance cyanobacteria Lyngbya wollei in Lake St. Clair and its potential to harbor fecal indicator bacteria. J Great Lakes Res 39(4):560–568

    Article  Google Scholar 

  37. Xue HB, Sigg L (1990) Binding of Cu(II) to algae in a metal buffer. Water Res 24:1129–1136

    CAS  Article  Google Scholar 

  38. Yan H, Pan G (2002) Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere 49:471–476

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank SePRO Corporation for use of their accredited laboratory to conduct this research. We also thank Mr. Jason Brown of the First Fruits Farm for facilitating this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to West M. Bishop.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bishop, W.M., Lynch, C.L., Willis, B.E. et al. Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei . Bull Environ Contam Toxicol 99, 365–371 (2017). https://doi.org/10.1007/s00128-017-2134-2

Download citation

Keywords

  • Copper
  • Exposure
  • Algaecide
  • Lyngbya wollei
  • Water resource management