Skip to main content

Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil

Abstract

Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with “Maya” Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC50) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Buch AC, Brown GG, Niva CC, Sautter KD, Lourençato LF (2011) Life cycle of Pontoscolex corethrurus (Muller, 1857) in tropical artificial soil. Pedobiologia 54S:S19–S25

    Article  Google Scholar 

  2. Buch AC, Brown GG, Niva CC, Sautter KD, Sousa JP (2013) Toxicity of three pesticides commonly used in Brasil to Pontoscolex corethrurus (Müller, 1857) and Eisenia andrei (Bouché, 1972). Appl Soil Ecol 69:32–38

    Article  Google Scholar 

  3. Buch AC, Schmelz RM, Niva CC, Fernandes CME, Silva-Filho EV (2017) Mercury critical concentrations to Enchytraeus crypticus (Annelida:Oligochaeta) under normal and extreme conditions of moisture in tropical soil- reproduction and survival. Environ Res 155:365–372

    CAS  Article  Google Scholar 

  4. Ceccanti B, Masciandaro G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of erathworms and compost for ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397

    CAS  Article  Google Scholar 

  5. Cermak JH, Stephenson GL, Birkholz D, Wang Z, Dixon DG (2010) Toxicity of petroleum hydrocarbon destillates to soil organisms. Environ Toxicol Chem 29:2685–2694

    CAS  Article  Google Scholar 

  6. Da Silva PMCS, Van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using soil types in the tropics. Chemosphere 77:1609–1613

    Article  Google Scholar 

  7. Da Silva E, Nahmani J, Lapied E, Alphonse V, Garnier-Zarli E, Bousserrhine N (2016) Toxicity of mercury to the earthworm Pontoscolex corethrurus in a tropical soil French Guiana. Appl Soil Ecol 104:79–84

    Article  Google Scholar 

  8. Duarte AP, Melo VF, Brown GG, Pauletti V (2014) Earthworms (Pontoscolex corethrurus) survival and impacts on properties of soils from a lead mining site Southern Brazil. Biol Fertil Soils 50:851–860

    CAS  Article  Google Scholar 

  9. Ekperusi OA, Aigbodion FI (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957–965

    CAS  Article  Google Scholar 

  10. Fernández MD, Pro J, Alonso C, Aragonese P, Tarazona JV (2011) Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils. Ecotoxicol Environ Saf 74:2133–2140

    Article  Google Scholar 

  11. Fiedler S, Siebe C, Herre A, Roth B, Cram S, Stahr K (2009) Contribution of oil industry activities to environmental loads of heavy metal in the Tabasco lowlands, Mexico. Water Air Soil Pollut 197:35–47

    CAS  Article  Google Scholar 

  12. García JA, Fragoso C (2003) Influence of different food substrates on growth and reproduction of two tropical earthworms species (Pontoscolex corethrurus and Amynthas corticis). Pedobiologia 47:754–763

    Google Scholar 

  13. García-Pérez JA, Alarcón-Gutiérrez E, Perroni Y, Barois I (2014) Earthworm communities and soil properties in shaded coffe plantations with and without application of glyphosate. Appl Soil Ecol 83:230–237

    Article  Google Scholar 

  14. Geissen V, Gomez-Rivera P, Huerta E, Bello R, Trujillo A, Barba E (2008) Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Ecotoxicol Environ Saf 7:638–642

    Article  Google Scholar 

  15. Gibbs MH, Wicker LF, Stewart AJ (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia foetida. Environ Toxicol Chem 15:360–368

    CAS  Article  Google Scholar 

  16. Gilman AP, Vardanis A (1974) Carbofuran: comparative toxicity and metabolism in the worms Lumbricus terrestris L. and Eiseni foetida S. J Agric Food Chem 22:625–628

    CAS  Article  Google Scholar 

  17. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassay. Environ Sci Technol 11:714–719

    CAS  Article  Google Scholar 

  18. Hanna SHS, Weaver RW (2002) Earthworm survival in oil contaminated soil. Plant Soil 240:127–132

    Article  Google Scholar 

  19. Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    CAS  Article  Google Scholar 

  20. Hernández-Castellanos B, Ortiz-Ceballos AI, Martínez-Hernández S, Noa-Carrazana JC, Luna-Guido M, Dendoveen L, Contreras-Ramos SM (2013) Removal of benzo(a)pyrene from using an endogeic earthworm Pontoscolex corethrurus (Müller, 1857). Appl Soil Ecol 70:62–69

    Article  Google Scholar 

  21. Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments: An alternative for acute and reproduction test. J Soil Sedim 1:15–20

    CAS  Article  Google Scholar 

  22. International Standard Organization (ISO) (2008) Soil quality-Avoidance test for determining the quality of soils and effects of chemicals on behaviour. ISO-17512-1:2008. Part 1: test with earthworms (Eisenia fetida and Eisenia andrei)

  23. International Standard Organization (ISO) (2012) Soil quality-Effects of pollutants on earthworms. ISO-11268-1:2012 (2nd ed). Part 1: determination of acute toxicity to Eisenia fetida/ Eisenia Andrei

  24. Jusselme MD, Poly F, Miambi E, Mora P, Blouin M, Pando A, Rouland-Lefèvre (2012) effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207

    CAS  Article  Google Scholar 

  25. Lavelle P, Barois I, Cruz I, Fragoso C, Hernández A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194

    Article  Google Scholar 

  26. Lowe CN, Butt KR (2007) Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: a critical review. Eur J Soil Biol 43:S281–S288

    CAS  Article  Google Scholar 

  27. Norton D (1996) Earthworm bioassay protocol for soil toxicity screening. Washington State Department of Ecology, Olympia. Publication No. 96–327

    Google Scholar 

  28. Oboh BO, Adeyinka Y, Awonuga A, Akinola MO (2007) Impact of soil types and petroleum effluents on the earthworm, Eudrilus eugeniae. J Environ Biol 28:209–212

    CAS  Google Scholar 

  29. Ortiz-Ceballos AI, Pérez-Staples D, Pérez-Rodríguez P (2016) Nest site selection and nutritional provision through excreta: a form of parental care in a tropical endogeic earthworm. PeerJ 4:e2032. doi:10.7717/peerj.2032

    Article  Google Scholar 

  30. Ortiz-Gamino D, Pérez-Rodríguez P, Ortiz-Ceballos AI (2016) Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) in temperate grasslands. PeerJ 4:e2572. doi:10.7717/peerj.2572

    Article  Google Scholar 

  31. Patowary R, Patowary K, Devi A, Kalita MC, Deka S (2017) Uptake of total petroleum hydrocarbon (THP) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. grown in soil contaminated with crude oil. Bull Environ Contam Toxicol 98:120–126

    CAS  Article  Google Scholar 

  32. Pelosi C, Joimel S, Makowski D (2013) Searching for a more sensitive earthworm species to be used in pesticide homologation tests—A meta-analysis. Chemosphere 90:895–900

    CAS  Article  Google Scholar 

  33. Pelosi C, Barot S, Capowiez, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agron Sustain Dev 34:199–228

    CAS  Article  Google Scholar 

  34. Plice MJ (1949) Some effects of crude petroleum on soil fertility. Soil Sci Soc Am J 13:413–416

    CAS  Article  Google Scholar 

  35. Reinecke AJ, Maboeta MS, Vermeulen LA, Reinecke SA (2002) Assessment of lead nitrate and mancozeb toxicity in earthworms using the avoidance response. Bull Environ Contam Toxicol 68:779–786

    CAS  Article  Google Scholar 

  36. Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology. Evaluation of different test systems in soil toxicity assessment. J Soils Sedim 3:79–84

    CAS  Article  Google Scholar 

  37. Schaefer M, Filser J (2007) The influence of earthworms and organic additives on the biodegradation of soil contaminated soil. Appl Soil Ecol 36:53–62

    Article  Google Scholar 

  38. Schaefer M, Petersen SO, Filser J (2005) Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil-contaminated soil. Soil Biol Biochem 37:2065–2076

    CAS  Article  Google Scholar 

  39. SEMARNAT (2006) Mexican Official Standard NMX-AA-134-SCFI-2006. Soils-Heavy fraction hydrocarbons by extraction and gravimetry. México

  40. SEMARNAT (2013) Mexican Official Standard NOM-138-SEMANAT/SSA1-2012. Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y expecificaciones para la remediación. México

  41. Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851

    CAS  Article  Google Scholar 

  42. Trejo-Hernández MR, Ortiz A, Okoh AI, Morales D, Quintero (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68:848–855

    Article  Google Scholar 

  43. Vermeulen LA, Reinecke AJ, Reinecke SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (Mancozeb) for sublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 48:183–189

    CAS  Article  Google Scholar 

  44. Villalobos M, Avila-Forcada P, Gutierrez-Ruiz ME (2008) An improved gravimetric method to determine petroleum hydrocarbons in contaminated soil. Water Air Soil Pollut 194:151–161

    CAS  Article  Google Scholar 

  45. Xie X, Qian Y, Wu Y, Yin J, Zhai J (2013) Effects decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida). Ecotoxicol Environ Saf 90:21–27

    CAS  Article  Google Scholar 

  46. Yasu T, Toyota F, Hiroaki KS (2005) Enhanced bioremediation of oil-contaminated soil by a combination of the earthworm (Eisenia fetida) and Tea extraction residue. Edaphologia 77:1–9

    Google Scholar 

  47. Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537

    CAS  Google Scholar 

  48. Zavala-Cruz J, Trujillo-Capistrán F, Ortiz-Ceballos G, Ortiz-Ceballos AI (2013) Tropical endogeic earthworm population in a pollution gradient with weathered crude oil. Res J Environ Sci 7:15–26

    Article  Google Scholar 

  49. Zhang L, Liu X, You L, Zhou D, Wang Q, Li F et al (2011) Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance (H1 NMR) based metabolomics. Environ Toxicol Pharmacol 32:218–225

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Rafael Ramos Morales for helpful discussion and Alejandro Castro-Luna for support in the statistical analysis. This research work was provided by the PRODEP-SEP (CA-UVER-173 and CA-UVER-332) and Mexican CONACYT (CB-2007-01/83600). We also two anonymous reviewers for valuable comments and careful revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angel I. Ortíz-Ceballos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

del Carmen Cuevas-Díaz, M., Vázquez-Luna, D., Martínez-Hernández, S. et al. Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil. Bull Environ Contam Toxicol 99, 154–160 (2017). https://doi.org/10.1007/s00128-017-2126-2

Download citation

Keywords

  • Soil contamination
  • Ecotoxicology
  • Bioremediation
  • Effective concentration (EC50)
  • Risk assessment