Skip to main content

Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design

Abstract

Based on the experimental subcooled liquid vapor pressures (P L) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure–activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L. The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Chen JW, Yang P, Chen S (2003) Quantitative structure-property relationships forvapor pressures of polybrominated diphenyl ethers. Sar Qsar Environ Res 14:91–111. doi:10.1007/s001280001

    Google Scholar 

  2. Chen Y, Cai XY, Jiang L (2016) Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models. Ecotoxicol Environ Saf 124: 202–212. doi:10.1016/j.ecoenv.2015.10.024

    CAS  Article  Google Scholar 

  3. Clark M, Cramer RD, Vanopdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012. doi:10.1002/jcc.540100804

    CAS  Article  Google Scholar 

  4. Corsolini S, Kannan K, Imagawa T (2002) Polychloronaphthalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environ Sci Technol 36:3490–3496. doi:10.1021/es025511v

    CAS  Article  Google Scholar 

  5. Falandysz J, Strandberg B, Strandberg L, Bergqvist P, Rappe C (1997) Concentrations and biomagnification of polychlorinated naphthalenes in black cormorants phalacrocorax carbo sinensis from theGulf of Gdansk, Baltic Sea. Sci Total Environ 204:97–106

    CAS  Article  Google Scholar 

  6. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    CAS  Article  Google Scholar 

  7. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276.

    CAS  Article  Google Scholar 

  8. Helm P, Bidleman T, Li H (2004) Seasonal and Spatial Variation of Polychlorinated Naphthalenes and Non-/Mono-Ortho-Substituted Polychlorinated Biphenyls in Arctic Air. Environ Sci Technol 38:5514–5521

    CAS  Article  Google Scholar 

  9. Jiang L, Li Y (2016) Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmosphericlong-range transport potential based on the pharmacophore modeling assistant with the full factor experimental design. J Hazard Mater 307:202–212. doi:10.1016/j.jhazmat.2015.12.031

    CAS  Article  Google Scholar 

  10. Khabeev NS, Shagapov VS, Yumagulova YA, Bailey SS (2015) Evolution of vaporpressure at contact with liquid. Acta Astronaut 114:147–151. doi:10.1016/j.actaastro.2015.05.003

    Article  Google Scholar 

  11. Kilanowicz A, Skrzypinska-Gawrysiak, M 2010 Toxicity of hexachloronaphthalene (HxCN) and induction of CYP 1 A in rats. Ecotox Environ Saf 73:196–205. doi:10.1016/j.ecoenv.2009.08.018

    CAS  Article  Google Scholar 

  12. Leach AR (2001) Molecular modelling: principles and applications. Person Education Limited Harlow, England

    Google Scholar 

  13. Lei YD, Wania F, Shiu WY (1999) Vapor pressures of thepolychlorinated naphthalenes. J Chem Eng Data 44:577–582. doi:10.1021/je9802827

    CAS  Article  Google Scholar 

  14. Li XL, Ye L, Shi W (2013) In silico study on hydroxylated polychlorinated biphenyls as androgen receptor antagonists. Ecotoxicol Environ Saf 92:258–264. doi:10.1016/j.ecoenv.2013.03.008

    CAS  Article  Google Scholar 

  15. Liu HX, Zhang QH, Jiang GB (2005) Polybrominated diphenyl ethersand its related environmental problems. Prog Chem 17:554–562. doi:10.3321/j.issn:1005-281X.2005.03.022

    CAS  Google Scholar 

  16. Lv YY, Yin CS, Liu HY (2008) 3D-QSAR study on atmospheric half-lives of POPs using CoMFA and CoMSIA. J Environ Sci-China 20:1433–1438. doi:10.1016/S1001-0742(08)62545-0

    CAS  Article  Google Scholar 

  17. Puzyn T, Falandysz J (2005) Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners. Atmos Environ 39:1439–1446. doi:10.1016/j.atmosenv.2004.11.022

    Article  Google Scholar 

  18. Wong A, Lei YD, Alaee M, Wania F (2001) Vapor pressures of the polybrominated diphenyl ethers. J ChemEng Data 46:239–242. doi:10.1021/je0002181

    CAS  Article  Google Scholar 

  19. Yamashita N, Kannan K, Imagawa T, Miyazaki A, Giesy JP (2000) Vertical profile of dioxin-like and estrogenic activities associated with a sediment core from Tokyo Bay, Japan. Environ Sci Technol 34:4236–4271. doi:10.1021/es001044a

    CAS  Article  Google Scholar 

  20. Zhang LL, Zhang LF, Dong L, Huang Y, Li XX (2015) Concentrations and patterns of polychlorinated naphthalenes in surface sediment samples from Wuxi, Suzhou, and Nantong, in East China. Chemosphere. 138:668–674. doi:10.1016/j.chemosphere.2015.07.045

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Chen, Y. & Li, Y. Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design. Bull Environ Contam Toxicol 99, 276–280 (2017). https://doi.org/10.1007/s00128-017-2123-5

Download citation

Keywords

  • Polychlorinated naphthalenes
  • Vapor pressure
  • Migration ability
  • 3D-QSAR
  • Molecule modification
  • Full factor experimental design