Skip to main content

Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea


This study aimed to determine mercury concentrations in tree rings and surface soils at distances of 4, 26 and 40 km from a fertilizer plant located in Yeosu City, Korea. Mercury concentrations in all tree rings were low prior to the establishment of the plant in 1977 and became elevated thereafter. The highest average mercury concentration in the tree rings was 11.96 ng g−1 at the Yeosu site located nearest to the plant, with the lowest average mercury concentration of 4.45 ng g−1 at the Suncheon site furthest away from the plant. In addition, the highest mercury content in the surface soil was 108.51 ng cm−3 at the Yeosu site, whereas the lowest mercury content in the surface soil was 31.47 ng cm−3 at the Suncheon site. The mercury levels decreased gradually with increasing distance from the plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Clarkson TW (1998) Human toxicology of mercury. J Trace Elem Med 11:303–317. doi:10.1002/(SICI)1520-670X(1998)11:2/3<303::AID-JTRA18>3.0.CO;2-V

    CAS  Article  Google Scholar 

  2. Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen TM, Munson RK (2007) Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience 57:17–28. doi:10.1641/B570106

    Article  Google Scholar 

  3. EPA (2007) Method 7473: mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry, part of test methods for evaluating solid waste, physical/chemical methods. Accessed 1 July 2013

  4. Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622. doi:10.1016/S1352-2310(03)00008-6

    CAS  Article  Google Scholar 

  5. Fleck JA, Grigal DF, Nater EA (1999) Mercury uptake by trees: an observational experiment. Water Air Soil Pollut 115:513–523. doi:10.1023/A:1005194608598

    CAS  Article  Google Scholar 

  6. Hagan N, Robins N, Hsu-Kim H, Halabi S, Morris M, Woodall G, Vandenberg J (2011) Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia. Atmos Environ 45:7619–7626. doi:10.1016/j.atmosenv.2010.10.009

    CAS  Article  Google Scholar 

  7. Hojdová M, Navrátil T, Rohovec J, Žák K, Vaněk A, Chrastný V, Svoboda M (2011) Changes in mercury deposition in a mining and smelting region as recorded in tree rings. Water Air Soil Pollut 216:73–82. doi:10.1007/s11270-010-0515-9

    Article  Google Scholar 

  8. Inacio MM, Pereira V, Pinto MS (1998) Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geogerma 85:325–339. doi:10.1016/S0016-7061(98)00027-5

    CAS  Google Scholar 

  9. Jackson M, Hancock D, Schulz R, Talbot V, Williams D (1986) Rock phosphate: the source of mercury pollution in a marine ecosystem at Albany, Western Australia. Mar Environ Res 18:185–202. doi:10.1016/0141-1136(86)90032-2

    CAS  Article  Google Scholar 

  10. Kim JS, Kim TW (1986) A study on the changes in forest community by air pollution at Yocheon district. J KAPRA 2:1–10

    CAS  Google Scholar 

  11. Korea Meteorological Administration (2017) Weather information. Korea Meteorological Administration Web. Accessed 13 Mar 2017 (in Korean)

  12. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO 36:3–11. doi:10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

    CAS  Article  Google Scholar 

  13. Mirlean N, Baisch P, Machado I, Shumilin E (2008) Mercury contamination of soil as the result of long-term phosphate fertilizer production. Bull Environ Contam Toxicol 81:305–308. doi:10.1007/s00128-008-9480-z

    CAS  Article  Google Scholar 

  14. Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Res 43:55–61

    Article  Google Scholar 

  15. Siwik EI, Campbell LM, Mierle G (2010) Distribution and trends of mercury in deciduous tree cores. Environ Pollut 158:2067–2073. doi:10.1016/j.envpol.2010.03.002

    CAS  Article  Google Scholar 

  16. Wängberg I, Munthe J, Pirrone N, Iverfeldt Å, Bahlman E, Costa P, Ebinghaus R et al (2001) Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos Environ 35:3019–3025

    Article  Google Scholar 

  17. Woo SY, Kim DG, Lee DS (2000) Effects of air pollution on physiological characteristics of Styrax japonica in Yeochon industrial complex. J KOSAE 16:121–128 (in Korean)

    Google Scholar 

  18. Yeosu City (2016) Yeosu Industrial Complex. Yeosu City Web. Accessed 1 July 2016 (in Korean)

  19. Zhang L, Qian JL, Planas D (1995) Mercury concentration in tree rings of black spruce (Picea mariana Mill. B.S.P.) in boreal Quebec, Canada. Water Air Soil Pollut 81:163–173. doi:10.1007/BF00477263

    Article  Google Scholar 

Download references


This research was supported by a Grant (NRF-2013R1A1A1008790) from the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning, Republic of Korea.

Author information



Corresponding author

Correspondence to Young Sang Ahn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, R., Ahn, Y.S. Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea. Bull Environ Contam Toxicol 99, 253–257 (2017).

Download citation


  • Fertilizer production
  • Mercury emission
  • Dendrochemistry
  • Soil contamination