Skip to main content

Toxicity and Genotoxicity of Three Antimicrobials Commonly Used in Veterinary Medicine

Abstract

The toxicity of chlortetracycline (CTC), oxytetracycline (OTC) and enrofloxacin (ENF) was tested on two green algal species: the international standard Pseudokirchneriella subcapitata and the native Argentine species Ankistrodesmus fusiformis. All three antibiotics inhibited the algal growth. The most sensitive species was P. subcapitata, for which the EC50 for CTC, OTC and ENF were 1.19 ± 0.53, 0.92 ± 0.30 and 5.18 ± 3.80 mg L−1, respectively. The EC50 for A. fusiformis, were 3.23 ± 0.53, 7.15 ± 2.69 and 10.6 ± 1.28 mg L−1, respectively. The genotoxicity of these veterinary antibiotics was also assessed using chromosome aberration (CA) and micronuclei (MN) induction in Allium cepa roots. Three concentrations were tested (0.1, 1 and 10 mg L−1). Only ENF at 1 and 10 mg L−1 showed any significant MN induction. These data revealed that CTC, OTC and ENF could cause toxicity on green algae, whereas ENF could cause genotoxicity on A. cepa plants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Archibald PA, Bold HC (1970) Phycological studies. XI. The genus Chlorococcum Meneghini. University of Texas Publication, Austin, p 86

    Google Scholar 

  2. Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth anddevelopment in soil systems. J Environ Qual 11:675–678

    CAS  Article  Google Scholar 

  3. Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30(12):2786–2792

    CAS  Article  Google Scholar 

  4. Environmental Canada (2007) Biological test method: growth inhibition test using a freshwater algae, EPS 1/RM/25 2nd edn. Environmental Canada, Ottawa, p 53

    Google Scholar 

  5. European Chemicals Agency (2008) Guidance on information requirements and chemical safety assessment. Chapter R. 10: characterisation of dose (concentration)-response for environment. European Chemicals Agency, Helsinki

  6. Gibson DP, Mo X, Switzer AG, Murphy VA, Ardema MJ (1998) Comparative genotoxicity of quinolone and quinolonyl-lactam antibacterials in the in vitro micronucleus assay in Chinese hamster ovary cells. Environ Mol Mutagen 31:345–351

    CAS  Article  Google Scholar 

  7. Gorla N, Garcia Ovendo H, Larripa I (1999) Chromosomal aberrations in human lymphocytes exposed in vitro to enrofloxacin and ciprofloxacin. Toxicol Lett 104:43–48

    CAS  Article  Google Scholar 

  8. Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutation—a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 426:107–112

    CAS  Article  Google Scholar 

  9. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  10. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    CAS  Article  Google Scholar 

  11. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ Toxicol Chem 17(3):377–382

    CAS  Article  Google Scholar 

  12. Holten-Lützhøft H-C, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Environ Contam Toxicol 6:1–6

    Google Scholar 

  13. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98

    CAS  Article  Google Scholar 

  14. Khadra A, Pinelli E, Lacroix MZ, Bousquet-Melou A, Hamdi H, Merlina G, Guiresse M, Hafidi M (2012) Assessment of the genotoxicity of quinolone and fluoroquinolones contaminated soil with the Vicia faba micronucleus test. Ecotoxicol Environ Saf 76:187–192

    CAS  Article  Google Scholar 

  15. Khan SJ, Roser DJ, Davies CM, Peters GM, Stuetz RM, Tucker R, Ashbolt NJ (2008) Chemical contaminants in feedlot wastes: concentrations, effects and attenuation. Environ Int 34:839–859

    CAS  Article  Google Scholar 

  16. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – part II. Chemosphere 75:435–441

    Article  Google Scholar 

  17. Kϋmmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710

    Article  Google Scholar 

  18. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    CAS  Article  Google Scholar 

  19. Lewis MA (1995) Use of fresh water plants for phytotoxicity testing: a review. Environ Pollut 87:319–336

    CAS  Article  Google Scholar 

  20. Li XW, Xie YF, Li CL, Zhao HN, Zhao H, Wang N, Wang JF (2014) Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China. Sci Total Environ 468–469:258–264

    Article  Google Scholar 

  21. Lin D, Zhou Q, Xu Y, Chen C, Li Yl (2012) Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. Environ Pollut 171:46–51

    CAS  Article  Google Scholar 

  22. Liu BY, Nie XP, Liu WQ, Snoeijs P, Guan C, Tsui MT (2011) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol Environ Saf 74:1027–1035

    CAS  Article  Google Scholar 

  23. Liu X, Lee J, Ji K, Takeda S, Choi K (2012) Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment. Toxicol Lett 211:70–76

    CAS  Article  Google Scholar 

  24. Magdaleno A, Vélez CG, Wenzel MT, Tell G (2014) Effects of cadmium, copper and zinc of four isolated algae from a highly polluted Argentina river. Bull Environ Contam Toxicol 92:202–207. doi:10.1007/s00128-013-1171-8

    CAS  Article  Google Scholar 

  25. Mann SK (1978) Interaction of tetracycline (TCA) with chromosomes in Allium cepa. Environ Exp Bot 18:201–205

    CAS  Article  Google Scholar 

  26. Matsumoto ST, Mantovani MS, Malagutti MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol 29:148–158

    CAS  Google Scholar 

  27. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244. 10.1016/S0045-6535(03)00272-8

    CAS  Article  Google Scholar 

  28. Migliore L, Rotini A, Cerioli NL, Cozzolino S, Fiori M (2010) Phytotoxic sulfadimethoxine elicits a complex hormetic response in the weed Lythrum salicaria L. Dose Response 8(4):414–427

    CAS  Article  Google Scholar 

  29. Prescott JF, Baggot JD, Walker RD (2000) Antimicrobial therapy in veterinary medicine. Iowa State University Press, Ames

    Google Scholar 

  30. Sabater C, Carrasco JM (2001) Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study. Chemosphere 44:1775–1781. doi:10.1016/S0045-6535(00)00575-0

    CAS  Article  Google Scholar 

  31. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment - a review. J Hazard Mater 175:45–95

    CAS  Article  Google Scholar 

  32. Van der Grinten E, Pikkemaat MG, Van den Brandhof E-J, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6

    Article  Google Scholar 

  33. Xie X, Zhou Q, He Z, Bao Y (2010) Physiological and potential genetic toxicityof chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). Environ Toxicol Chem 29:922–928

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Buenos Aires University, Argentina, under the Project UBACyT No. 20020150200116BA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anahí Magdaleno.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magdaleno, A., Carusso, S. & Moretton, J. Toxicity and Genotoxicity of Three Antimicrobials Commonly Used in Veterinary Medicine. Bull Environ Contam Toxicol 99, 315–320 (2017). https://doi.org/10.1007/s00128-017-2091-9

Download citation

Keywords

  • Chlortetracycline
  • Oxytetracycline
  • Enrofloxacin
  • Pseudokirchneriella subcapitata
  • Allium cepa