Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process

  • Guosen Zhang
  • Yu Wang
  • Jinhui Jiang
  • Shao Yang


Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%–100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.


Macrophyte Bisphenol A Ceratophyllum demersum Epiphytic microorganisms Biodegradation 



This work was financially supported by the National Science and Technology Major Project for Water Pollution Control and Treatment (2013ZX07105-005) and the National Natural Science Foundation of China (31200399).


  1. Agostini E, de Forchetti SM, Tigier HA (2000) Peroxidases from cell suspension cultures of brassica napus. Biocell 24(2):133–138Google Scholar
  2. Allanson BR (2006) The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R. G. Wetzel and H. L. Allen. Freshw Biol 3(6):535–542. doi: 10.1111/j.1365-2427.1973.tb00075.x CrossRefGoogle Scholar
  3. Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Int J Phytoremediation 17(7):678–685. doi: 10.1080/15226514.2014.964838 CrossRefGoogle Scholar
  4. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  5. Cousins IT, Staples CA, Kleĉka GM, Mackay D (2010) A multimedia assessment of the environmental fate of bisphenol a. Hum Ecol Risk Assess 8(5):1107–1135CrossRefGoogle Scholar
  6. Dhir B (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39(9):754–781. doi: 10.1080/10643380801977776 CrossRefGoogle Scholar
  7. Ebina J, Tsutsui T, Shirai T (1983) Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res 17(12):1721–1726CrossRefGoogle Scholar
  8. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol a exposure, effects, and policy: a wildlife perspective. J Environ Manage 104(16):19–34. doi: 10.1016/j.jenvman.2012.03.021 CrossRefGoogle Scholar
  9. Gao JP, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6114–6120. doi: 10.1021/jf9904968 CrossRefGoogle Scholar
  10. García J (2011) Advances in pollutant removal processes and fate in natural and constructed wetlands. Ecol Eng 37(5):663–665. doi: 10.1016/j.ecoleng.2011.02.012 CrossRefGoogle Scholar
  11. Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol 8(1):1–10. doi: 10.1186/1471-2180-8-58 CrossRefGoogle Scholar
  12. Imai S, Gamo SK (2007) Removal of phenolic endocrine disruptors by Portulaca oleracea. J Biosci Bioeng 103(5):420–426CrossRefGoogle Scholar
  13. Loffredo E, Gattullo CE, Traversa A, Senesi N (2010) Potential of various herbaceous species to remove the endocrine disruptor bisphenol a from aqueous media. Chemosphere 80(11):1274–1280. doi: 10.1016/j.chemosphere.2010.06.054 CrossRefGoogle Scholar
  14. Michałowicz J (2014) Bisphenol a-sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37(37):738–758. doi: 10.1263/jbb.103.420 CrossRefGoogle Scholar
  15. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M et al (2006) Bisphenol a induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: prosobranchia) at environmentally relevant concentrations. Environ Health Perspect 114(suppl 1):127–133. doi: 10.1289/ehp.8065 Google Scholar
  16. Okuhata H, Ikeda K, Miyasaka H, Takahashi S, Matsui T, Nakayama H et al (2010) Floricultural salvia, plants have a high ability to eliminate bisphenol a. J Biosci Bioeng 110(1):99–101. doi: 10.1016/j.jbiosc.2009.12.014 CrossRefGoogle Scholar
  17. Olsen RA, Bakken LR (1987) Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13(1):59–74CrossRefGoogle Scholar
  18. Reis AR, Tabei K, Sakakibara Y (2013) Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants. J Hazard Mater 265(2):79–88. doi: 10.1016/j.jhazmat.2013.11.042 Google Scholar
  19. Saiyood S, Vangnai AS, Thiravetyan P, Inthorn D (2010) Bisphenol a removal by the dracaena plant and the role of plant-associating bacteria. J Hazard Mat 178(1–3):777–785. doi: 10.1016/j.jhazmat.2010.02.008 CrossRefGoogle Scholar
  20. Skene KR (2002) The evolution of physiology and development in the cluster root: teaching old dog new tricks? Plant Soil 248(1) 21–30. doi: 10.1023/A:1022303201862 Google Scholar
  21. Sorkhoh NA, Al-Mailem DM, Ali N, Al-Awadhi H, Salamah S, Eliyas M et al (2011) Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. Int Biodeter Biodegr 65(6):797–802. doi: 10.1016/j.ibiod.2011.01.013 CrossRefGoogle Scholar
  22. Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y et al (2011) Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 45(15):6524–6530. doi: 10.1021/es201061a CrossRefGoogle Scholar
  23. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol a in hazardous waste landfill leachates. Chemosphere 42(4):415–418CrossRefGoogle Scholar
  24. Zazouli MA (2013) Phytodegradation potential of bisphenol a from aqueous solution by Azolla filiculoides. J Environ Health Sci Eng 12(1):1–5. doi: 10.1186/2052-336X-12-66 Google Scholar
  25. Zhang B, Zhenbin WU, Cheng S, Feng HE, Wang Y, Gao Y (2007). Primary study on phytodegradation of bisphenol a by Elodea nuttallii. Wuhan Univ J Nat Sci 12(6):1118–1124. doi: 10.1007/s11859-007-0110-0 CrossRefGoogle Scholar
  26. Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol a degradation. Appl Microbiol Biotechnol 97(13):5681–5689. doi: 10.1007/s00253-013-4949-z CrossRefGoogle Scholar
  27. Zhou C, An S, Jiang J, Yin D, Wang Z, Fang C et al (2006) An in vitro propagation protocol of two submerged macrophytes for lake revegetation in east China. Aquat Bot 85(1):44–52. doi: 10.1016/j.aquabot.2006.01.013 CrossRefGoogle Scholar
  28. Zhou F, Han RM, Ma J, Wang GX (2016) Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the shallow fresh lake Taihu, China. Environ Sci Pollut Res 23(14):1–13. doi: 10.1007/s11356-016-6390-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Life SciencesCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations