Skip to main content

A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES

Abstract

In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L−1, respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 7:70–71. doi:10.1039/b210714g

    Article  Google Scholar 

  2. Abbott AP, Capper G, Davies DL (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6499. doi:10.1021/ic0505450

    CAS  Article  Google Scholar 

  3. Abbott AP, Capper G, Davies DL (2006) Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data 51:1280–1282. doi:10.1021/je060038c

    CAS  Article  Google Scholar 

  4. Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567. doi:10.1016/j.cej.2015.03.091

    CAS  Article  Google Scholar 

  5. Altintig E, Altundag H, Tuzen M (2014) Determination of multi element levels in leaves and herbal teas from Turkey by ICP-OES. Bull Chem Soc Ethiop 28:9–16.

    CAS  Article  Google Scholar 

  6. Alves FL, Cadore S, Jardim WF, Arruda MAZ (2001) River sediment analysis by slurry sampling FAAS: determination of copper, Zinc and lead. J Braz Chem Soc 12:799–803. doi:10.1590/S0103-50532001000600018

    CAS  Article  Google Scholar 

  7. Arain MB, Yilmaz E, Soylak M (2016) Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt. J Mol Liq 224:538–543. doi:10.1016/j.molliq.2016.10.005

    CAS  Article  Google Scholar 

  8. Armenta S, Garrigues S, de la Guardia M (2015) The role of green extraction techniques in green analytical chemistry. TrAC Trends Anal Chem 71:2–8. doi:10.1016/j.trac.2014.12.011

    CAS  Article  Google Scholar 

  9. Bağda E, Altundağ H, Soylak M (2017) Highly simple deep eutectic solvent extraction of manganese in vegetable samples prior to its ICP-OES analysis. Biol Trace Elem Res doi:10.1007/s12011-017-0967-5

    Google Scholar 

  10. Bi W, Tian M, Row KH (2013) Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A 1285:22–30. doi:10.1016/j.chroma.2013.02.041

    CAS  Article  Google Scholar 

  11. Cui Q, Peng X, Yao X-H (2015) Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep Purif Technol 150:63–72. doi:10.1016/j.seppur.2015.06.026

    CAS  Article  Google Scholar 

  12. Das AK, Sharma M, Mondal D, Prasad K (2015) Deep eutectic solvents as efficient solvent system for the extraction of K-carrageenan from Kappaphycus alvarezii. Carbohydr Polym 136:930–935. doi:10.1016/j.carbpol.2015.09.114

    Article  Google Scholar 

  13. de Vallejuelo SFO, Barrena A, Arana G (2009) Ultrasound energy focused in a glass probe: an approach to the simultaneous and fast extraction of trace elements from sediments. Talanta 80:434–439. doi:10.1016/j.talanta.2009.07.002

    Article  Google Scholar 

  14. Espino M, Fernández MDLÁ, Gomez FJV, Silva MF (2015) Natural designer solvents for greening analytical chemistry. Trends Anal Chem. doi:10.1016/j.trac.2015.11.006

    Google Scholar 

  15. Frena M, Quadros DPC, Castilho INB (2014) A novel extraction-based procedure for the determination of trace elements in estuarine sediment samples by ICP-MS. Microchem J 117:1–6. doi:10.1016/j.microc.2014.05.014

    CAS  Article  Google Scholar 

  16. Helalat-Nezhad Z, Ghanemi K, Fallah-Mehrjardi M (2015) Dissolution of biological samples in deep eutectic solvents: an approach for extraction of polycyclic aromatic hydrocarbons followed by liquid chromatography-fluorescence detection. J Chromatogr A 1394:46–53. doi:10.1016/j.chroma.2015.03.053

    CAS  Article  Google Scholar 

  17. Karimi M, Dadfarnia S, Mohammad A (2015) Talanta deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and pre- concentraion of lead and cadmium in edible oils. Talanta 144:648–654. doi:10.1016/j.talanta.2015.07.021

    CAS  Article  Google Scholar 

  18. Khezeli T, Daneshfar A, Sahraei R (2015) Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1425:25–33. doi:10.1016/j.chroma.2015.11.007

    CAS  Article  Google Scholar 

  19. Kudlak B, Owczarek K, Namieśnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res 22:11975–11992. doi:10.1007/s11356-015-4794-y

    CAS  Article  Google Scholar 

  20. Li X, Row KH (2016) Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. doi:10.1002/jssc.201600633

    Google Scholar 

  21. Matong JM, Nyaba L, Nomngongo PN (2017) Determination of As, Cr, Mo, Sb, Se and V in agricultural soil samples by inductively coupled plasma optical emission spectrometry after simple and rapid solvent extraction using choline chloride-oxalic acid deep eutectic solvent. Ecotoxicol Environ Saf 135:152–157. doi:10.1016/j.ecoenv.2016.09.033

    CAS  Article  Google Scholar 

  22. Mendil D, Ünal ÖF, Tüzen M, Soylak M (2010) Determination of trace metals in different fish species and sediments from the River Yesilirmak in Tokat, Turkey. Food Chem Toxicol 48:1383–1392. doi:10.1016/j.fct.2010.03.006

    CAS  Article  Google Scholar 

  23. Mohammad FAH, Amin NAS (2012) An overview of ionic liquids as solvents in biodiesel synthesis. Renew Sustain Energy Rev 16:5770–5786. doi:10.1016/j.rser.2012.06.022

    Article  Google Scholar 

  24. Moreda-Piñeiro J (2015) Recent advances in combining microextraction techniques for sample pre-treatment. Trends Anal Chem 71:265–274. doi:10.1016/j.trac.2015.02.025

    Article  Google Scholar 

  25. Naozuka J, Carvalho Vieira E, Nascimento AN, Oliveira PV (2011) Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chem 124:1667–1672. doi:10.1016/j.foodchem.2010.07.051

    CAS  Article  Google Scholar 

  26. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. doi:10.1021/cr300162p

    CAS  Article  Google Scholar 

  27. Soylak M, Turkoglu O (1999) Trace metal accumulation caused by traffic in an agricultural soil near a motorway in Kayseri, Turkey. J Trace Microprobe Tech 17:209–217

    CAS  Google Scholar 

  28. Tan T, Zhang M, Wan Y, Qiu H (2015) Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 149:85–90. doi:10.1016/j.talanta.2015.11.041

    Article  Google Scholar 

  29. Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatshefte für Chem-Chem Mon 144:1427–1454. doi:10.1007/s00706-013-1050-3

    CAS  Article  Google Scholar 

  30. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064. doi:10.1002/jssc.201401347

    CAS  Article  Google Scholar 

  31. Tiwari BK (2015) Ultrasound: a clean, green extraction technology. TrAC Trends Anal Chem 71:100–109. doi:10.1016/j.trac.2015.04.013

    CAS  Article  Google Scholar 

  32. Tobiasz A, Walas S (2014) Solid-phase-extraction procedures for atomic spectrometry determination of copper. TrAC Trends Anal Chem 62:106–122. doi:10.1016/j.trac.2014.06.018

    CAS  Article  Google Scholar 

  33. Tuzen M, Sari H, Soylak M (2004) Microwave and wet digestion procedures for atomic absorption spectrometric determination of trace metals contents of sediment samples. Anal Lett 37:1925–1936. doi:10.1081/AL-120039436

    CAS  Article  Google Scholar 

  34. Wang H, Ding J, Ren N (2015) Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. Trends Anal Chem 75:197–208. doi:10.1016/j.trac.2015.05.005

    Article  Google Scholar 

  35. Wang Z, Lu X, Zhang K (2016) Distribution and contamination of metals and biogenic elements in sediments from Zhifu Bay of the Yellow Sea, China. J Environ Sci 41:6–15. doi:10.1016/j.jes.2015.06.009

    Article  Google Scholar 

  36. Wei Z, Qi X, Li T (2015) Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol 149:237–244. doi:10.1016/j.seppur.2015.05.015

    CAS  Article  Google Scholar 

  37. Wu SH, Zeng YF, Chen L (2016) Amplified electrochemical DNA sensor based on hemin/G-quadruplex DNAzyme as electrocatalyst at gold particles modified heated gold disk electrode. Sens Actuators B 225:228–232. doi:10.1016/j.snb.2015.11.020

    CAS  Article  Google Scholar 

  38. Yao X-H, Zhang D-Y, Duan M-H (2015) Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Sep Purif Technol 149:116–123. doi:10.1016/j.seppur.2015.03.037

    CAS  Article  Google Scholar 

  39. Yilmaz E, Soylak M (2015) Ultrasound assisted-deep eutectic solvent extraction of iron from sheep, bovine and chicken liver samples. Talanta 136:170–173. doi:10.1016/j.talanta.2014.12.034

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are fully grateful for the financial support of the Unit of the Scientific Research Projects of Cumhuriyet University, Sakarya University, Gaziosmanpaşa University and Erciyes University and Cumhuriyet University Advanced Technology Research Center (CÜTAM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esra Bağda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bağda, E., Altundağ, H., Tüzen, M. et al. A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES. Bull Environ Contam Toxicol 99, 264–269 (2017). https://doi.org/10.1007/s00128-017-2065-y

Download citation

Keywords

  • Extraction
  • Deep eutectic solvent
  • Sediment
  • Inductively coupled plasma optical emission spectrometry