Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia

Abstract

Bioaugmentation-assisted phytoremediation implies the administration of selected plant growth promoting bacteria, which significantly improve plant growth and sequestration of heavy metals. In this work, 184 bacterial strains associated with roots of Pistacia lentiscus were isolated from plants spontaneously growing in the abandoned Sardinian mining areas (SW Sardinia, Italy) and phylogenetically characterised. Twenty-one bacterial isolates were assayed for properties relevant for plant growth promotion and metal tolerance. Five different strains, belonging to the genera Novosphingobium, Variovorax, Streptomyces, Amycolatopsis, Pseudomonas, were selected based on their properties for the greenhouse phytoremediation tests. Among the tested inocula, the strain Variovorax sp. RA128A, able to produce ACC deaminase and siderophore, was able to significantly enhance germination and increase length and weight of shoots and roots. Irrespective of the applied treatment, mastic shrub was able to accumulate Cd, Pb and Zn especially in roots.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    CAS  Article  Google Scholar 

  2. Bacchetta G, Cao A, Cappai G, Carucci A, Casti M, Fercia ML, Lonis R, Mola F (2012) A field experiment on the use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. et Sm.) Greuter for the phytoremediation of abandoned mining areas. Plant Biosyst 146:1–10

    Article  Google Scholar 

  3. Bacchetta G, Cappai G, Carucci A, Tamburini E (2015) Use of native plants for the remediation of abandoned mine sites in mediterranean semiarid environments. Bull Environ Contam Toxicol 94:326–333

    CAS  Article  Google Scholar 

  4. Boni M, Costabile S, De Vivo B, Gasparrini M (1999) Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). J Geochem Explor 67:417–430

    CAS  Article  Google Scholar 

  5. Concas S, Lattanzi P, Bacchetta G, Barbafieri M, Vacca A (2015) Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy metal-rich soils: implications for phytostabilization. Water Air Soil Pollut 226:1–15

    CAS  Article  Google Scholar 

  6. Dandurand LC, Knudsen GR (1997) Sampling microbes from the rhizosphere and phyllosphere. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology, Washington, pp 391–399

    Google Scholar 

  7. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    CAS  Article  Google Scholar 

  8. D.Lgs. n 152, 03/04/2006 (2006) Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana S.O. n. 96 del 14/4/2006

  9. Dominguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    CAS  Article  Google Scholar 

  10. Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  Google Scholar 

  11. Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007) Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere 66:412–420

    CAS  Article  Google Scholar 

  12. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    CAS  Article  Google Scholar 

  13. Grandlic CJ, Mendez MO, Chorover J, Machado B, Mater RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084

    CAS  Article  Google Scholar 

  14. Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, Berlin, pp 95–105

    Google Scholar 

  15. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Florida

    Google Scholar 

  16. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    CAS  Article  Google Scholar 

  17. Lopes SP, Azevedo NF, Pereira MO (2014) Emergent bacteria in cystic fibrosis: in vitro biofilm formation and resilience under variable oxygen conditions. Biomed Res Int. doi:10.1155/2014/678301

    Google Scholar 

  18. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  Article  Google Scholar 

  19. Manjanatha MG, Loynachan TE, Atherly AG (1992) Tn5 mutagenesis of chinese Rhizobium fredii for siderophore overproduction. Soil Biol Biochem 24:151–155

    CAS  Article  Google Scholar 

  20. Mendez M, Maier R (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    CAS  Article  Google Scholar 

  21. Mergey M (1995) Heavy metal resistances in microbial ecosystems. In: Akkermans ADL, van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, p 6.1.7-1-17

    Google Scholar 

  22. Nautiyal Shekar C (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  Google Scholar 

  23. Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836

    CAS  Article  Google Scholar 

  24. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees: a review. Environ Int 29:529–540

    CAS  Article  Google Scholar 

  25. Tamburini E, Gordillo León A, Perito B, Di Candilo M, Mastromei G (2004) Exploitation of bacterial pectinolytic strains for improvement of hemp water retting. Euphytica 140:47–54

    Article  Google Scholar 

  26. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    CAS  Article  Google Scholar 

  27. Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediat 15:51–64

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Regional Sardinian Government, in the framework of “L.R. 7/2007, Promotion of scientific research and technological innovation in Sardinia”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Tamburini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamburini, E., Sergi, S., Serreli, L. et al. Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia. Bull Environ Contam Toxicol 98, 310–316 (2017). https://doi.org/10.1007/s00128-016-1866-8

Download citation

Keywords

  • Phytoremediation
  • Bioaugmentation
  • Heavy metal
  • Pistacia lentiscus
  • Plant growth promoting bacteria