Skip to main content

Kinetic Study of Nitrate Removal from Aqueous Solutions Using Copper-Coated Iron Nanoparticles

Abstract

Nitrates are considered hazard compounds for human health due to their tendency to be reduced to nitrites, in particular in reducing environment. Nano zero valent iron (nZVI) represents an efficient and low-cost adsorbent/reductive agent for nitrate removal from groundwater and wastewaters and a little addition of a second metal species (Cu, Pd, Ni, Ag) has proven to increase process effectiveness, by enhancing stability and oxidation resistance of nanoparticles. In this work Cu/Fe nanoparticles were loaded in a NO3 solution (100 mg L−1) and the removal efficiency was tested by monitoring nitrate concentration at selected time intervals. Results showed that the nitrate removal process involves both reduction and adsorption processes: the removal mechanism has been investigated, and the pseudo-first-order and pseudo-second-order-adsorption kinetic models were successfully tested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almeida JS, Reis MAM, Carrondo MJT (1995) Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46:476–484

    CAS  Article  Google Scholar 

  2. Aytimur G, Di Palma L, Merli C (2008) Experimental validation of a model for the cycle of nitrogen in a step sludge recirculation activated sludge system with denitrification. Environ Technol 29:591–601

    CAS  Article  Google Scholar 

  3. Bae BU, Jung YH, Han WW, Shin HS (2002) Improved brine recycling during nitrate removal using ion exchange. Water Res 36:3330–3340

    CAS  Article  Google Scholar 

  4. Chen Z, Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2013) Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J Colloid Int Sci 398:59–66

    CAS  Article  Google Scholar 

  5. Chun CL, Baer DR, Matson DW, Amonette JE, Penn RL (2010) Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environ Sci Technol 44(13):5079–5085

    CAS  Article  Google Scholar 

  6. Cirtiu CM, Raychoudhury T, Ghoshal S, Moores A (2011) Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloid Surf. A 390:95–104

    CAS  Article  Google Scholar 

  7. De Filippis P, Di Palma L, Scarsella M, Verdone N (2013) Biological denitrification of high rate wastewater: a comparison between three electron donors. Chem Eng Trans 32:319–324

    Google Scholar 

  8. Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76

    Article  Google Scholar 

  9. Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem Rev 199:159–179

    CAS  Article  Google Scholar 

  10. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221

    CAS  Article  Google Scholar 

  11. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34

    CAS  Article  Google Scholar 

  12. Hörold S, Vorlop KD, Tacke T, Sell M (1993) Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catal Today 17(1–2):21–30

    Article  Google Scholar 

  13. Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276(1):214–221

    Article  Google Scholar 

  14. Hwang YH, Kim DG, Ahn YT, Moon CM, Shin H (2010) Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics. Water Sci Technol 61:705–712

    CAS  Article  Google Scholar 

  15. Hwang YH, Kim DG, Shin HS (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185:1513–1521

    CAS  Article  Google Scholar 

  16. Italian Environmental Regulation, Environmental standards assessment, G.U. n. 88 of 14 April 2006

  17. Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water-review. J Environ Eng 123(4):371–380

    CAS  Article  Google Scholar 

  18. Kim DG, Hwang YH, Shin HS, Ko SO (2015) Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): effect of ionic strength and initial pH. J Civil Eng 20:175–187

    Google Scholar 

  19. Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47(7):2131–2139

    CAS  Article  Google Scholar 

  20. Liou YH, Lo SL, Lin CJ, Kuan WH, Weng SC (2005a) Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. J Hazard Mater 127(1):102–110

    CAS  Article  Google Scholar 

  21. Liou YH, Lo SL, Lin CJ, Kuan WH, Weng SC (2005b) Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. J Hazard Mater 126(1–3):189–194

    CAS  Article  Google Scholar 

  22. Martin JE, Herzing AA, Yan W, Li XQ, Koel BE, Kiely CJ, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24(8):4329–4334

    CAS  Article  Google Scholar 

  23. Montesinos VN, Quici N, Halac EB, Leyva AG, Custo G, Bengio S, Litter MI (2014) Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: understanding the Fe(III)–Cr(III) passive outer layer structure. Chem Eng J 244:569–575

    Article  Google Scholar 

  24. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    CAS  Article  Google Scholar 

  25. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  26. Powell RM, Puls RW, Blowes DW, Vogan JL, Gillham RW, Powell PD, Schultz D, Landis R, Sivavec T (1998) Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125, US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington DC

  27. Rodríguez-Maroto JM, García-Herruzo F, García-Rubio A, Gómez-Lahoz C, Vereda-Alonso C (2009) Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 74(6):804–809

    Article  Google Scholar 

  28. Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Environ Sci Technol 30(3):363

    CAS  Article  Google Scholar 

  29. Siciliano A (2015) Use of nanoscale zero-valent iron (NZVI) particles for chemical denitrification under different operating conditions. Metals 5(3):1507–1519

    CAS  Article  Google Scholar 

  30. Singh R, Misra V, Singh RP (2012) Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. B Environ Contam Toxicol 88(2):210–214

    CAS  Article  Google Scholar 

  31. Sparis D, Mystrioti C, Xenidis A, Papassiopi N (2013) Reduction of nitrate by copper-coated ZVI nanoparticles. Desalin Water Treat 51:2926–2933

    CAS  Article  Google Scholar 

  32. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Int Sci 120(1):47–56

    CAS  Article  Google Scholar 

  33. Taipei Veterans General Hospital, http://www.vghtpe.gov.tw/tcfund/infomation/200106017.htm

  34. Wang W, Jin ZH, Li TL, Zhang H, Gao S (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65(8):1396–1404

    CAS  Article  Google Scholar 

  35. Wang A, Qian H, Yang Y, Zhang Z, Naman C, Xu X (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114:35–42

    CAS  Article  Google Scholar 

  36. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    CAS  Article  Google Scholar 

  37. Yabusaki S, Cantrell K, Sass B, Steefe LC (2001) Multicomponent reactive transport in an in situ zero-valent iron cell. Environ Sci Technol 35(7):1493

    CAS  Article  Google Scholar 

  38. Yang GCC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39:884–894

    CAS  Article  Google Scholar 

  39. Zhang Y, Li Y, Li J, Hu L, Zheng X (2011) Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem Eng J 171(2):526–531

    CAS  Article  Google Scholar 

  40. Zhou L, Le Thanh T, Gong J, Kim JH, Kim EJ, Chang YS (2014a) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere 104:155–161

    CAS  Article  Google Scholar 

  41. Zhou S, Li Y, Chen J, Liu Z, Wang Z, Na P (2014b) Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism. RSC Adv 4(92):50699–50707

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luca Di Palma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilardi, G., Di Palma, L. Kinetic Study of Nitrate Removal from Aqueous Solutions Using Copper-Coated Iron Nanoparticles. Bull Environ Contam Toxicol 98, 359–365 (2017). https://doi.org/10.1007/s00128-016-1865-9

Download citation

Keywords

  • Groundwater remediation
  • Nitrate
  • Chemical reduction
  • nZVI
  • Core shell mechanism