Skip to main content

Advertisement

Log in

Lead in the Red-Crowned Cranes (Grus japonensis) in Zhalong Wetland, Northeastern China: A Report

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The dietary uptake of Cd and Pb may contribute to the decline of migratory red-crowned cranes (Grus japonensis) on the Asian mainland. To uncover the relevance of this hypothesis, we determined the concentrations of Pb and Cd as well as further macro and trace elements (Ca, Mg, Cu, Zn, Hg and As) in the gastric contents, gastric wall, intestinal wall, liver, kidney, muscle, and feathers of two individuals found dead in Zhalong Wetland in Northeastern China. Indeed, the Pb concentrations in the liver and kidney tissues was with 31.4 and 60.3 mg kg−1 dry weight (dw), respectively, above concentrations considered as potentially toxic level in common birds (i.e. 30 mg kg−1). These Pb concentration may have possibly been associated with lethal toxicosis in this endangered species suggesting Pb as major threat for G. japonensis populations. Thus, the inputs of Pb into Zhalong Wetland should be reduced to maintain and reestablish environmental conditions supporting the population development of these migratory red-crowned cranes in the Zhalong Wetland, a critical crane habitat for the long-term sustainability of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G, Kunito T, Tanabe S, Ogi H, Shibata Y (2005) Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environ Toxicol Chem 24:2107–2120

    Article  CAS  Google Scholar 

  • BirdLife International (2012) Grus japonensis: IUCN 2012. IUCN red list of threatened species, Version 2012. 4. http://www.birdlife.org/datazone/speciesfactsheet. Accessed 5 May 2013

  • Burger J, Gochfeld M (1993) Lead and cadmium accumulation in eggs and fledgling seabirds in the New York Bight. Environ Toxicol Chem 12:261–267

    Article  CAS  Google Scholar 

  • Carpenter JW, Andrews GA, Beyer WN (2004) Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator). J Wildl Dis 40:769–774

    Article  Google Scholar 

  • Clark AJ, Scheuhammer AM (2003) Lead poisoning in up-land foraging birds of prey in Canada. Ecotoxicology 12:23–30

    Article  CAS  Google Scholar 

  • Custer CM, Custer TW, Anteau MJ, Afton AD, Wooten DE (2003) Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway. Ecotoxicology 12:47–54

    Article  CAS  Google Scholar 

  • Dauwea T, Janssens E, Bervoetsb L, Blustb R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256

    Article  Google Scholar 

  • Degernes LA (2008) Waterfowl toxicology: a review. Veterinary Clinics of North America; exotic animal. Practice 11:283–300

    Google Scholar 

  • Eisler R (1988) Lead hazards to fish, wildlife, and invertebrates: a synoptic review. United States Fish and Wildlife Service Biology Report 85(1.14)

  • Eisler R (2000) Handbook of chemical risk assessment: health hazards to humans, plants, and animals, vol 1. Metals. Lewis Publishers, Boca Raton

    Book  Google Scholar 

  • Friend M (1985) Interpretation of criteria commonly used to determine lead poisoning problem areas. Leafleft 2. United States Fish and Wildlife Service. Fish and wildlife, Washington DC

    Google Scholar 

  • Gee GW, Bauder JW (1982) Particle-size analysis. In: Miller RH, Keeney DR (eds) Methods of soil analysis: part 2. Agronomy monographs: no. 9, 2nd edn. ASA, Madison, pp 383–411

    Google Scholar 

  • Gent JA Jr (1983) A computer program for determining particle size distribution and soil textural class. Commun Soil Sci Plant 14:347–351

    Article  Google Scholar 

  • Gonzalez LM (1988) Organochlorine and heavy metal contamination in the eggs of the Spanish imperial eagle (Aquila heliaca adalberti) and accompanying changes in eggshell morphology and chemistry. Environ Pollut 51:241–258

    Article  CAS  Google Scholar 

  • Harris J (2008) Cranes respond to climate change. ICF Bugle 34(1–3):14–15

    Google Scholar 

  • Kim J, Oh J-M (2014) Assessment of lead exposure in waterfowl species, Korea. Arch Environ Contam Toxicol 67:529–534

    Article  CAS  Google Scholar 

  • Locke LN, Thomas NJ (1996) Lead poisoning of waterfowl and raptors. In: Fairbrother A, Locke LN, Hoff GL (eds) Noninfectious diseases of wildlife, 2nd edn. Iowa State University Press, Ames, pp 108–117

    Google Scholar 

  • Luo J, Yin X, Ye Y, Wang Y, Zang S, Zhou X (2013) Pb and Cd bioaccumulations in the habitat and preys of red-crowned cranes (Grus japonensis) in Zhalong Wetland, Northeastern China. Biol Trace Elem Res 156:134–143

    Article  CAS  Google Scholar 

  • Luo J, Ye Y, Gao Z, Wang Y, Wang W (2014a) Characterization of heavy metal contamination in the habitat of red-crowned crane (Grus japonensis) in Zhalong Wetland, Northeastern China. Bull Environ Contam Toxicol 93:327–333

    Article  CAS  Google Scholar 

  • Luo J, Ye Y, Wang Y (2014b) Dietary exposure of the red-crowned crane (Grus japonensis) to total and methyl mercury in Zhalong Wetland, Northeastern China. Biol Trace Elem Res 159:210–218

    Article  CAS  Google Scholar 

  • Luo J, Ye Y, Gao Z, Wang W (2015a) Essential and nonessential elements in red-crowned cranes (Grus japonensis) of Zhalong Wetland, Northeastern China. Toxicol Environ Chem 96:1096–1105

    Article  Google Scholar 

  • Luo J, Ye Y, Gao Z, Wang W (2015b) Stomach content and faecal analysis of red-crowned cranes (Grus japonensis) in Zhalong Wetland, Northeastern China. Biologia 70:542–546

    Article  Google Scholar 

  • Orłowski G, Kasprzykowski Z, Zawada Z, Kopij G (2009) Stomach content and grit ingestion by Rook Corvus frugilegus nestlings. Ornis Fenn 86:117–122

    Google Scholar 

  • Orłowski G, Kamiński P, Kasprzykowski Z, Zawada Z, Koim-Puchowska B, Szady-Grad M, Klawe JJ (2012) Essential and nonessential elements in nesting rooks Corvus frugilegus from eastern Poland with a special emphasis on their high cadmium contamination. Arch Environ Contam Toxicol 63:601–611

    Article  Google Scholar 

  • Pain DJ, Meharg AA, Ferrer M, Taggart M, Penteriani P (2005) Lead concentrations in bones and feathers of the globally threatened Spanish imperial eagle. Biol Conserv 121: 603–610

    Article  Google Scholar 

  • Puls R (1994) Mineral levels in animal health: diagnostic data, 2nd edn. Sherpa International, Clearbrook, British Columbia, p 349

    Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity of aluminum, cadmium, mercury, and lead in bird: a review. Environ Pollut 46:263–295

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1996) Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94:337–343

    Article  CAS  Google Scholar 

  • Snyder SB, Richard MJ, Thilsted JP, Drewien RC (1992) Lead poisoning in a whooping crane. Technical Report 12. In: Proceedings, 1988 North American Crane Workshop, Nongame Wildlife Program, Florida Fish and Wildlife Conservation Commission, Tallahassee, FL, USA, pp 207–210

  • Spalding MG, Nesbitt SA, Folk MJ, McDowell LR, Sepulveda MS (1997) Metal consumption by whooping cranes and possible zinc toxicosis. N Am Crane Workshop Proc 7:237–242

    Google Scholar 

  • Su L, Zhou F (2012) Status, threats and conservation needs for the continental population of the redcrowned crane. Chin Birds 3:147–164

    Article  Google Scholar 

  • Takazawa Y, Kitamura K, Yoshikane Y, Morita M (2004) Discovery of fenthion poisoning in two Japanese cranes (Grus japonensis) found dead in Hokkaida, Japan. Bull Environ Contam Toxicol 73:947–954

    Article  CAS  Google Scholar 

  • Teraoka H, Kumagai Y, Iwai H, Haraguchi K, Ohba T, Nakai K, Satoh H, Sakamoto M, Momose K, Masatomi H, Hiraga T (2007) Heavy metal contamination status of Japanese cranes (Grus japonensis) in east Hokkaido, Japan–extensive mercury pollution. Environ Toxicol Chem 26:307–312

    Article  CAS  Google Scholar 

  • United States Department of the Interior. 1998. Guidelines for interpretation of the biological effects of selected constituents in biota, water, and sediment. National Irrigation Water Quality Program Information Report No. 3

  • USEPA (1996) Method 3050B-Acid digestion of sediments, sludges, and soils. United States Environmental Protection Agency, Washington DC

    Google Scholar 

  • Wiemeyer SN, Withers D (2004) Metals and trace elements in livers of American white pelicans at Anaho Island. Nevada 2004. United States Fish and Wildlife Service, Nevada Fish and Wildlife Office, Reno

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Heilongjiang provincial nature fund under Grant No. C2016058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Ye, Y., Gao, Z. et al. Lead in the Red-Crowned Cranes (Grus japonensis) in Zhalong Wetland, Northeastern China: A Report. Bull Environ Contam Toxicol 97, 177–183 (2016). https://doi.org/10.1007/s00128-016-1853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1853-0

Keywords

Navigation