Skip to main content
Log in

Chronic Exposure to Perfluorooctane Sulfonate Reduces Lifespan of Caenorhabditis elegans Through Insulin/IGF-1 Signaling

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant. Although multiple adverse effects of PFOS have been demonstrated, whether PFOS can accelerate aging and affect animal longevity remains unknown. In Caenorhabditis elegans, we found that a 50 h exposure to 0.2–200 µM PFOS reduced lifespan in a concentration dependent manner. In transgenic nematodes, lifespans are affected by mutations of daf-16, daf-2 or age-1 genes, which are related to the Insulin/IGF-1 Signaling pathway (IIS). PFOS exposure caused an additional reduction in average lifespan in daf-2(e1370) and daf-16b(KO) nematodes. In contrast, daf-16(mu86) nematodes showed no additional reduction with PFOS exposure and age-1(hx546) mutants did not exhibit a reduction in lifespan with PFOS exposure, compared with wildtype nematodes. Overall, our findings demonstrate that PFOS exposure accelerates aging and shortens longevity of animals. The PFOS-induced effect may involve genes of the IIS pathway, particularly daf-16 and age-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrens L, Bundschuh M (2014) Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem 33:1921–1929

    Article  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95:199–210

    Article  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  Google Scholar 

  • Chen N, Li J, Li D, Yang Y, He D (2014) Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS One 9:e113453

    Article  Google Scholar 

  • Clancy D, Birdsall J (2013) Flies, worms and the free radical theory of ageing. Ageing Res Rev 12:404–412

    Article  CAS  Google Scholar 

  • Ghazi A (2013) Transcriptional networks that mediate signals from reproductive tissues to influence lifespan. Genesis 51:1–15

    Article  CAS  Google Scholar 

  • Hansen K, Johnson HO, Eldridge JS, Butenhoff JL, Dick LA (2002) Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ Sci Technol 36:1681–1685

    Article  CAS  Google Scholar 

  • Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588

    Article  CAS  Google Scholar 

  • Hu XZ, Hu DC (2009) Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol 83:851–861

    Article  CAS  Google Scholar 

  • Hu J, Yu J, Tanaka S, Fujii S (2011) Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment of Singapore. Water Air Soil Poll 216:179–191

    Article  CAS  Google Scholar 

  • Johnson TE, Tedesco PM, Lithgow GJ (1993) Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica 91:65–77

    Article  CAS  Google Scholar 

  • Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–398

    Article  CAS  Google Scholar 

  • Kannan K, Yun SH, Rudd RJ, Behr M (2010) High concentrations of persistent organic pollutants including PCBs, DDT, PBDEs and PFOS in little brown bats with white-nose syndrome in New York, USA. Chemosphere 80:613–618

    Article  CAS  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci 366:9–16

    Article  CAS  Google Scholar 

  • Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA (2010) A new DAF-16 isoform regulates longevity. Nature 466:498–502

    Article  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  • Lee HG, Lee YJ, Yang JH (2012) Perfluorooctane sulfonate induces apoptosis of cerebellar granule cells via a ROS-dependent protein kinase C signaling pathway. Neurotoxicology 33:314–320

    Article  CAS  Google Scholar 

  • Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  CAS  Google Scholar 

  • Libna N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  Google Scholar 

  • Mariussen E (2012) Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 86:1349–1367

    Article  CAS  Google Scholar 

  • Meng J, Wang T, Wang P, Zhu Z, Li Q, Lu Y (2015) Perfluoroalkyl substances in daling river adjacent to fluorine industrial parks: implication from industrial emission. Bull Environ Contam Toxicol 94:34–40

    Article  CAS  Google Scholar 

  • Miralles-Marco A, Harrad S (2015) Perfluorooctane sulfonate: a review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution. Environ Int 77:148–159

    Article  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284

    Article  CAS  Google Scholar 

  • Paiano V, Fattore E, Carra A, Generoso C, Fanelli R, Bagnati R (2012) Liquid chromatography-tandem mass spectrometry analysis of perfluorooctanesulfonate and perfluorooctanoic Acid in fish fillet samples. J Anal Methods Chem 2012:719010

    Article  Google Scholar 

  • Sinclair E, Mayack D, Roblee K, Yamashita N, Kannan K (2006) Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Arch Environ Contam Toxicol 50:398–410

    Article  CAS  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  CAS  Google Scholar 

  • Xu D, Jin J, Shen T, Wang Y (2013) Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase. Bull Environ Contam Toxicol 91:577–582

    Article  CAS  Google Scholar 

  • Zareitalabad P, Siemens J, Hamer M, Amelung W (2013) Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—a review on concentrations and distribution coefficients. Chemosphere 91:725–732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science and Technology Major Project of China (No. 2013ZX07310-001-04) and a grant from the Natural Science Foundation of Shanghai (No. 16ZR1409300) for Defu He. Thanks for Caenorhabditis Genetics Center contributing transgenic strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, P., Wu, S. et al. Chronic Exposure to Perfluorooctane Sulfonate Reduces Lifespan of Caenorhabditis elegans Through Insulin/IGF-1 Signaling. Bull Environ Contam Toxicol 97, 119–123 (2016). https://doi.org/10.1007/s00128-016-1808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1808-5

Keywords

Navigation