Skip to main content

Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana

Abstract

Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L−1 irradiated with 60Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1–5 kGy for an azoxystrobin initial concentration of 0.4 mg L−1 and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allinson G, Zhang P, Bui A, Allinson M, Rose G, Marshall S, Pettigrove V (2015) Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ Sci Pollut Res 22:10214–10226. doi:10.1007/s11356-015-4206-3

    Article  CAS  Google Scholar 

  2. Amvrazi EG (2011) Fate of pesticide residues on raw agricultural crops after postharvest storage and food processing to edible portions, pesticides—formulations, effects, fate, Prof. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-532-7, InTech. doi:10.5772/13988. http://www.intechopen.com/books/pesticides-formulations-effects-fate/fate-of-pesticide-residues-on-raw-agricultural-crops-after-postharvest-storage-and-food-processing-t. Accessed 14 Jan 2015

  3. Benachour N, Seralini GE (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105. doi:10.1021/tx800218n

    Article  CAS  Google Scholar 

  4. Blaise C (1991) Microbiotests in aquatic ecotoxicology–characteristics, utility and prospects. Environ Toxicol Water Qual 6:145–155. doi:10.1002/tox.2530060204

    Article  Google Scholar 

  5. Blaise C, Ferard JF (2006) Microbiotests in aquatic toxicology: the way forward. Environ Toxicol 10:339–348. doi:10.2495/ETOX060341

    CAS  Google Scholar 

  6. Burlakova EB, Naidich VI (2006) Radiation safety as a research problem. Her Russ Acad Sci 76:591–594. doi:10.1134/S1019331606060116

    Article  Google Scholar 

  7. Council of Europe (1976) European convention for the protection of animals kept for farming purposes. European Treaty Series Nr. 87, vol 20. European Council, Strasbourg, pp 62–65

  8. Directive 2010/63/EU of the European parliament and of the Council (2010) On the protection of animals used for scientific purposes. Nr. L 276, 20.10.2010 European parliament and the Council of the European Union, pp 33–79

  9. Dongmei C, Tianli Y, Yahong Y, Zhenpengd G, Lapinge L (2008) Effects of ~(60)Co-γ ray radiation on the degradation of organophosphorous pesticides in apple juice and its quality. Chin Soc Agric Eng 24:270–274. doi:10.3969/j.issn.1002-6819.2008.5.045

    Google Scholar 

  10. Dvorak P (1995) Modified test with A. salina for the monitoring of interactions between exogenous substances. Toxicity and biodegradability of matters important in water management. Milenovice, Research Institute of fish culture and hydrobiology Vodnany and Aquachemie Ostrava, pp 25–29

  11. Dvorak P, Benová K, Zdarsky M, Sklenar Z, Havelkova A (2010) Use of the crustacean Artemia franciscana for alternative biotests. Acta Vet Brno 79:47–53. doi:10.2754/avb201079S9S047

    Article  CAS  Google Scholar 

  12. Dvorak P, Zdarsky M, Benova K, Spalek M (2012) Selected morphological changes in Artemia franciscana after ionizing radiation exposure. Bull Environ Contam Toxicol 89:286–291. doi:10.1007/s00128-012-0693-9

    Article  CAS  Google Scholar 

  13. European Food Safety Authority (EFSA) (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin. EFSA J 8(4):1542. doi:10.2903/j.efsa.2010.1542

    Google Scholar 

  14. Jiang JH, Ding LS, Michailides TJ, Li HY, Ma ZH (2009) Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pest Biochem Physiol 93:72–76. doi:10.1016/j.pestbp.2008.11.004

    Article  CAS  Google Scholar 

  15. Kuet S, Hadfield S (1994) Aqueous photolysis at pH 7. Jealott’s hill research station, Zeneca agrochemicals, UK. Report 1705B. Syngenta file No. ICI5504/0823

  16. Liu L, Jiang C, Wu ZQ, Gong YX, Wang GX (2013) Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicol Environ Saf 98:297–302. doi:10.1016/j.ecoenv.2013.10.011

    Article  CAS  Google Scholar 

  17. Lu Y, Xu XL, Shen XY, Meng C, Wang L, Shankar G, Anand S (2013) The toxicity assay of Artemia salina as a biological model for the preliminary toxic evaluation of chemical pollutants. Res J Chem Environ 17:18-21. WOS:000327401900004, ISSN:0972-0626

  18. Ma ZH, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863. doi:10.1016/j.cropro.2005.01.011

    Article  CAS  Google Scholar 

  19. Manna S, Singh N, Singh VD (2013) Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil. Environ Model Assess 185:2951–2960. doi:10.1007/s10661-012-2763-1

    Article  CAS  Google Scholar 

  20. Maracek I, Kostelecka Z, Kalatova J, Sopkova D, Klapacova K, Falis M, Dankovcik R, Legath J, Ostro A (2011) Effect of fungicides on the functional interaction of cells tertiary follicles in the ovaries during assisted process dominance oestrus ewes. Slovak Vet J 1:27–30

    Google Scholar 

  21. Montagner CC, Vidal C, Acayaba RD et al (2014) Trace analysis of pesticides and assessment of their occurrence in surface and drinking waters from the State of Sao Paulo (Brazil). Anal Methods 6(17):6668–6677

    Article  CAS  Google Scholar 

  22. Oates L, Cohen M (2011) Assessing diet as a modifiable risk factor for pesticide exposure. Int J Environ Res Public Health 8:1792–1804. doi:10.3390/ijerph8061792

    Article  Google Scholar 

  23. Olsvik PA, Kroglund F, Finstad B, Kristensen T (2010) Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo solar L.) smolt. Ecotoxicol Environ Saf 73:1852–1861. doi:10.1016/j.ecoenv.2010.07.017

    Article  CAS  Google Scholar 

  24. Pachecco WF, Doyle A, Duarate DRA, Ferraz CS, Farias PAM, Aucelio RQ (2010) Square-wave adsorptive stripping voltammetry for trace determination of dimoxystrobin and azoxystrobin in potatoes and grapes. Food Anal Methods 3:205–210. doi:10.1007/s12161-009-9109-9

    Article  Google Scholar 

  25. Pesticide residues in food (2008) Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Rome, Italy, 9–18 September 2008, pp 12–14. ISBN 978-92-5-106113-8

  26. Rodrigues ET, Pardal MA, Laize V, Cancela ML, Oliveira PJ, Serafim TL (2015) Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin. Environ Pollut 206:619–626. doi:10.1016/j.envpol.2015.08.026

    Article  CAS  Google Scholar 

  27. Sanchez-Fortun S, Barahona MV (2009) Toxicity and characterization of cholinesterase-inhibition induced by diisopropyl fluorophosphates in Artemia salina larvae. Ecotoxicol Environ Saf 72:775–780. doi:10.1016/j.ecoenv.2007.11.004

    Article  CAS  Google Scholar 

  28. Steel T, Joseph R (1994) Hydrolysis at pH 5, 7, and 9 at 25 and 50°C. Jealott’s hill research station, Zeneca agrochemicals, UK. Report No. RJ1717B. Syngenta file No. ICI5504/0824

  29. Steinfeld U, Sierotzki H, Parisi S, Poirey S, Gisi U (2001) Sensitivity of mitochondrial respiration to different inhibitors in Venturia inaequalis. Pest Manag Sci 57:787–796. doi:10.1002/ps.356

    Article  CAS  Google Scholar 

  30. Sterba G (1983) Ansetzen des Seewassers und seine Kontrolle. In: Aquarienkunde, band 2, 9th edn. Urania-Verlag, Jena, pp 283–288

  31. Wayland JH Jr, Laws ER (1991) Dosage and other factors influencing toxicity. In: Handbook of pesticide toxicology, vol 1. General principles. Academic Press, New York, pp 39–97

  32. Weijia X, Tianli Y, Yahong Y, Zhenpeng G (2009) Degradation of pyrethroids and carbamate pesticides in apple juice by irradiation. Chin Soc Agric Mach 4:121–124

    Google Scholar 

Download references

Acknowledgments

The present study was supported by The National Reference Laboratory for Pesticides SR, UVLF-KE and the project of Internal Grant Agency University of Veterinary and Pharmaceutical Sciences Brno IGA VFU Brno 92/2011/FVHE, (IG212112).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Dvorak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dvorak, P., Zdarsky, M., Benova, K. et al. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana . Bull Environ Contam Toxicol 96, 822–826 (2016). https://doi.org/10.1007/s00128-016-1805-8

Download citation

Keywords

  • Nauplius stages Artemia franciscana
  • 60Co gamma radiation
  • Biotest
  • Fungicide azoxystrobin