Skip to main content

The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola)

Abstract

We determined the toxicity of oil refinery waste in three soils using the springtail Folsomia candida (Collembola) in bioassays. Sublethal exposure to a concentration series of API-sludge presented EC50’s for reproduction of 210 mg/kg in site soil; 880 mg/kg in LUFA2.2- and 3260 mg/kg in OECD-soil. The sludge was the least toxic in the OECD-soil with the highest clay and organic matter content, the highest maximum water holding capacity, and the least amount of sand. It was the most toxic in the reference site soil with the lowest organic matter content and highest sand content. The results emphasized the important role of soil characteristics such as texture and organic matter content in influencing toxicity, possibly by affecting bioavailability of toxicants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amorim MJB, Pereira C, Menezes-Oliveira VB, Campos B, Soares AMVM, Loureiro S (2012) Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Colembola) in soil. Environ Pollut 160:145–152

    CAS  Article  Google Scholar 

  2. Da Silva FMR Jr, Silva PF, Guimaraes FS, De Almeida KA, Baisch PRM, Muccillo-Baisch AL (2014) Ecotoxicological tools for landfarming site evaluation in a petrochemical complex area. Pedosphere 24:280–284

    Article  Google Scholar 

  3. Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, microtox and plants. Chemosphere 31:845–860

    Article  Google Scholar 

  4. Geissen V, Gomez-rivera P, Lwanga EH, Mendoza RB, Narcias AT, Marcias EB (2008) Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Ecotoxicol Environ Saf 71:638–642

    CAS  Article  Google Scholar 

  5. Genou G, Van Meenen P, Van der Wert H, De Nijs W, Verstraete W (1994) Degradation of oil sludge by landfarming – a case study at Ghent harbour. Biodegradation 5:37–46

    Article  Google Scholar 

  6. Gonzalez-Alcaraz M, Tsitsiou E, Wieldraaijer R, Verweij RA, Van Gestel CAM (2015) Effects of climate change on the toxicity of soils polluted by metal mine waste to Enchytraeus crypticus. Environ Toxicol Chem 34:346–354

    CAS  Article  Google Scholar 

  7. Haanstra L, Doelman P, Oude Voshaar JH (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    CAS  Article  Google Scholar 

  8. Hu G, Li J, Zeng G (2013) Recent developments in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490

    CAS  Article  Google Scholar 

  9. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    CAS  Article  Google Scholar 

  10. Makadia TH, Adetutu EM, Simons KL, Jardine D, Sheppard PJ, Ball AS (2011) Re-use of remediated soils for the bioremediation of waste oil sludge. J Environ Manage 92:866–871

    CAS  Article  Google Scholar 

  11. OECD (2004) Organization for economic cooperation and development guideline for the testing of chemicals 222. Earthworm reproduction test Eisenia fetida andrei, Paris

  12. OECD (2009) Organization for economic co-operation and development guideline for testing of chemicals 232. Collembolan reproduction test in soil, Paris

  13. Paumen ML, Steenbergen E, Kraak MH, Van Straalen NM, Van Gestel CA (2008) Multigeneration exposure of the springtail Folsomia candida to phenanthrone: from dose-response relationships to threshold concentrations. Environ Sci Technol 42(18):6985–6990

    Article  Google Scholar 

  14. Punnaruttanakun P, Meeyoo V, Kalambaheti C, Rangsunvigit P, Rirksomboon T, Kittyanan B (2003) Pyrolysis of API separator sludge. J Anal Appl Pyrolysis 68–69:547–560

    Article  Google Scholar 

  15. Reinecke AJ, Reinecke SA, Van Wyk M (2015) Kan die gevoeligheid van grondlewende organismes bydra om die volhoubaarheid van landbewerking van olieraffinadery afval te be-oordeel? S Afr J Sci Technol/SATNT 34:1–10

    Google Scholar 

  16. Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schllnass HJ (2006) Improvement of the applicability of ecotoxicological tests with earthworms, springtails, and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25:776–787

    Article  Google Scholar 

  17. Schnug L, Leinaas HP, Jensen J (2014) Synergistic sub-lethal effects of a biocide mixture on the springtail Folsomia fimetaria. Environ Pollut 186:158–164

    CAS  Article  Google Scholar 

  18. Sverdrup LE, Kelley AE, Krogh PH, Nielsen T, Jensen J, Scott-Fordsmand JJ, Stenersen J (2001) Effects of eight polycyclic aromatic compounds on the survival and reproduction of the springtail Folsomia fimetaria L. (Collembola, Isotomidae). Environ Toxicol Chem 20:1332–1338

    CAS  Article  Google Scholar 

  19. Tan KH (2005) Soil sampling, preparation, and analysis. Taylor & Francis, Boca Raton

    Google Scholar 

  20. Van Coller-Myburgh C, Van Rensburg L, Maboeta M (2014) Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes. Appl Soil Ecol 83:258–265

    Article  Google Scholar 

  21. Van der Watt VH (1966) Improved tables and a simplified procedure for soil particle analysis by hydrometer method. S Afr J Agric 9:911–916

    Google Scholar 

  22. Van Gestel CAM, Van der Waarde JJ, Derksen JGM, Veul MFXW, Bouwens S, Rusch B, Kronenburg R, Stokman GNM (2001) The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ Toxicol Chem 7:1438–1449

    Article  Google Scholar 

  23. Van Wyk M (2010) Evaluating the toxic waste from a historic landfarming site using bioassays. M.Sc. dissertation, Stellenbosch University, South Africa, p 110

  24. Wahl JJ, Theron PD, Maboeta MS (2012) Soil mesofauna as bioindicators to assess environmental disturbance at a platinum mine in South Africa. Ecotoxicol Environ Saf 86:250–260

    CAS  Article  Google Scholar 

  25. Weissenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was made possible by financial support from the University of Stellenbosch, SASOL and the National Research Foundation of South Africa. All opinions, conclusions and recommendations are those of the authors. We thank Maria Diez Ortiz and Daniel Giesen for help with springtail bioassays and Jonathan Williams for assistance with culturing of experimental animals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriaan J. Reinecke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reinecke, A.J., van Wyk, M. & Reinecke, S.A. The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola). Bull Environ Contam Toxicol 96, 804–809 (2016). https://doi.org/10.1007/s00128-016-1792-9

Download citation

Keywords

  • Bioassays
  • Soils
  • Oil refinery waste
  • Springtails
  • Toxicity