Skip to main content
Log in

Comparison of Measured and Predicted Bioconcentration Estimates of Pharmaceuticals in Fish Plasma and Prediction of Chronic Risk

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Evaluation of the environmental risk of human pharmaceuticals is now a mandatory component in all new drug applications submitted for approval in EU. With >3000 drugs currently in use, it is not feasible to test each active ingredient, so prioritization is key. A recent review has listed nine prioritization approaches including the fish plasma model (FPM). The present paper focuses on comparison of measured and predicted fish plasma bioconcentration factors (BCFs) of four common over-the-counter/prescribed pharmaceuticals: norethindrone (NET), ibuprofen (IBU), verapamil (VER) and clozapine (CLZ). The measured data were obtained from the earlier published fish BCF studies. The measured BCF estimates of NET, IBU, VER and CLZ were 13.4, 1.4, 0.7 and 31.2, while the corresponding predicted BCFs (based log Kow at pH 7) were 19, 1.0, 7.6 and 30, respectively. These results indicate that the predicted BCFs matched well the measured values. The BCF estimates were used to calculate the human: fish plasma concentration ratios of each drug to predict potential risk to fish. The plasma ratio results show the following order of risk potential for fish: NET > CLZ > VER > IBU. The FPM has value in prioritizing pharmaceutical products for ecotoxicological assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler NE, Koschorreck J, Rechenberg B (2008) Environmental impact assessment and control of pharmaceuticals: the role of environmental agencies. Water Sci Technol 57:91–97. doi:10.2166/wst.2008.816

    Article  CAS  Google Scholar 

  • Andreozzi R, Marotta R, Paxéus N (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330. doi:10.1016/S0045-6535(02)00769-5

    Article  CAS  Google Scholar 

  • Ayscough NJ, Fawell J, Franklin G, Young W (2000) Review of human pharmaceuticals in the environment. Environment Agency technical report

  • Batt AL, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 80:5021–5030. doi:10.1021/ac800066n

    Article  CAS  Google Scholar 

  • Caldwell DJ, Mastrocco F, Margiotta-Casaluci L, Brooks BW (2014) An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere. doi:10.1016/j.chemosphere.2014.01.021

    Google Scholar 

  • Carlsson C, Johansson AK, Alvan G et al (2006) Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87. doi:10.1016/j.scitotenv.2005.06.035

    Article  CAS  Google Scholar 

  • European Medicines Agency (2006) Guideline on the environmental risk assessment of medicinal products for human use, pp 1–12

  • Fick J, Lindberg RH, Parkkonen J et al (2010a) Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents. Environ Sci Technol 44:2661–2666. doi:10.1021/es903440m

    Article  CAS  Google Scholar 

  • Fick J, Lindberg RH, Tysklind M, Larsson DGJ (2010b) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58:516–523. doi:10.1016/j.yrtph.2010.08.025

    Article  CAS  Google Scholar 

  • Fitzsimmons PN, Fernandez JD, Hoffman AD et al (2001) Branchial elimination of superhydrophobic organic compounds by rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 55:23–34. doi:10.1016/S0166-445X(01)00174-6

    Article  CAS  Google Scholar 

  • Flippin JL, Huggett D, Foran CM (2007) Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat Toxicol 81:73–78. doi:10.1016/j.aquatox.2006.11.002

    Article  CAS  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777. doi:10.1016/j.chemosphere.2014.09.068

    Article  CAS  Google Scholar 

  • Gunnarsson L, Jauhiainen A, Kristiansson E et al (2008) Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42:5807–5813. doi:10.1021/es8005173

    Article  CAS  Google Scholar 

  • Holm G, Snape JR, Murray-Smith R et al (2013) Implementing ecopharmacovigilance in practice: challenges and potential opportunities. Drug Saf 36:533–546. doi:10.1007/s40264-013-0049-3

    Article  Google Scholar 

  • Huggett DB, Cook JC, Ericson JF, Williams RT (2003) A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish. Hum Ecol Risk Assess Int J 9:1789–1799. doi:10.1080/714044797

    Article  CAS  Google Scholar 

  • Huggett D, Ericson J, Cook JWR (2004) Plasma concentrations of human pharmaceuticals as predictors of pharmacological responses in fish. In: Klauss K (ed) Pharmaceuticals in the environment. Springer, Berlin, pp 373–386

    Chapter  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. doi:10.1021/es011055j

    Article  CAS  Google Scholar 

  • Li Z-H, Li P, Randak T (2010) Ecotoxocological effects of short-term exposure to a human pharmaceutical Verapamil in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part C Toxicol Pharmacol 152:385–391

    Article  Google Scholar 

  • Nallani GC, Paulos PM, Constantine LA et al (2011) Bioconcentration of ibuprofen in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Chemosphere 84:1371–1377. doi:10.1016/j.chemosphere.2011.05.008

    Article  CAS  Google Scholar 

  • Nallani GC, Paulos PM, Venables BJ et al (2012) Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes. Arch Environ Contam Toxicol 62:306–313. doi:10.1007/s00244-011-9691-x

    Article  CAS  Google Scholar 

  • Nallani GC, Edziyie RE, Paulos PM et al (2016) Bioconcentration of two basic pharmaceuticals verapamil and clozapine in fish. Environ Toxicol Chem. doi:10.1002/etc.3244

    Google Scholar 

  • Paulos P, Runnalls TJ, Nallani G et al (2010) Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, norethindrone. Aquat Toxicol 99:256–262. doi:10.1016/j.aquatox.2010.05.001

    Article  CAS  Google Scholar 

  • Petersen LH, Hala D, Carty D et al (2015) Effects of progesterone and norethindrone on female fathead minnow (Pimephales promelas) steroidogenesis. Environ Toxicol Chem 34:379–390. doi:10.1002/etc.2816

    Article  CAS  Google Scholar 

  • Roos V, Gunnarsson L, Fick J et al (2012) Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Sci Total Environ 421–422:102–110. doi:10.1016/j.scitotenv.2012.01.039

    Article  Google Scholar 

  • Schreiber R, Gündel U, Franz S et al (2011) Using the fish plasma model for comparative hazard identification for pharmaceuticals in the environment by extrapolation from human therapeutic data. Regul Toxicol Pharmacol 61:261–275. doi:10.1016/j.yrtph.2011.08.006

    Article  CAS  Google Scholar 

  • Woldegiorgis A, Kaj L, Dye C (2007) Results from the Swedish screening 2006, sub report 4: pharmaceuticals

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinath Nallani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallani, G., Venables, B., Constantine, L. et al. Comparison of Measured and Predicted Bioconcentration Estimates of Pharmaceuticals in Fish Plasma and Prediction of Chronic Risk. Bull Environ Contam Toxicol 96, 580–584 (2016). https://doi.org/10.1007/s00128-016-1782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1782-y

Keywords

Navigation