Skip to main content

Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy

Abstract

The purpose of this study was to evaluate the extent of the Hg geochemical anomaly arising in the Amiata and Tolfa complex to the coastal area of northern Latium and to examine the possible influence on this area by the Mignone River, and by the small coastal basins, which are characterized by both previous mining activities and decades of past industrial impact. The results confirm the extension of the anomaly of concentrations of Hg in the coastal area of northern Latium, with the northern sector influenced by the contributions of the Fiora and Mignone Rivers and the southern sector influenced by the contributions of minor basins. The results show high values of the Adverse Effect Index throughout the considered area and highlight the need for further investigation in order to assess the impact of human activities on the present and past values of Hg in marine sediments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adamo P, Arienzo M, Imperato M, Naimo D, Nardi G, Stanzione D (2005) Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61:800–809

    CAS  Article  Google Scholar 

  2. Angelucci A, Borelli GB, Burragato F, Tortora P (1979). Risultati preliminari delle indagini “placers” nel tratto di piattaforma continentale compreso tra Torre Valdaliga ed il promontorio dell’Argentario. Atti del Convegno Scientifico Oceanografia e Fondi Marini (Roma, CNR) 1–13, 5–7

  3. Anselmi B, Brondi A, Ferretti O, Rabottino L (1976) Studio mineralogico e sedimentologico della costa compresa fra Ansedonia e la foce del Fiume Mignone. Soc It Min Petr Rendiconti 32:311–348

    Google Scholar 

  4. Aureli D, Contardi A, Giaccio B, Modesti M, Palombo MR, Rozzi R et al (2012) Straight-tusked elephants in the Middle Pleistocene of northern Latium: preliminary report on the Ficoncella site (Tarquinia, central Italy). Quat Int 255:29–35

    Article  Google Scholar 

  5. Baldi F, Bargagli R (1982) Chemical leaching and specific surface area measurements of marine sediments in the evaluation of mercury contamination near cinnabar deposits. Mar Environ Res 6:69–82

    CAS  Article  Google Scholar 

  6. Bargagli R, Barghigiani C, Maserti BE (1986) Mercury in vegetation of the Mount Amiata area (Italy). Chemosphere 15:1035–1042

    CAS  Article  Google Scholar 

  7. Barghigiani C, Bauleo R (1992) Mining area environmental mercury assessment using Abies alba. Bull Environ Contam Toxicol 49:31–36

    CAS  Article  Google Scholar 

  8. Barghigiani C, Ristori T (1994) Mercury levels in agricultural products of Mt. Amiata (Tuscany, Italy). Arch Environ Contam Toxicol 26:329–334

    CAS  Article  Google Scholar 

  9. Barghigiani C, Ristori T (1995) The distribution of mercury in a Mediterranean area. In: Watras CJ, Huckabee JW (eds) Mercury pollution: integration and synthesis. Lewis Publisher, Boca Raton, p 41

    Google Scholar 

  10. Barghigiani C, Ferrara R, Seritti A, Petrosino A, Masoni A, Morelli E (1981) Determination of reactive, total and particulate mercury in the coastal waters of Tuscany (Italy) by Atomic Fluorescence Spectrometry. In: Proceeding of the Ves Journbes Etud Pollut C.I.E.S.M, 1980, pp 127–130

  11. Barghigiani C, Ristori T, Lopez-Arenas J (1996) Mercury in marine sediment from contaminated area of the northern Tyrrhenian Sea: < 20 lm grain-size fraction and total sample analysis. Sci Total Environ 192:63–73

    CAS  Article  Google Scholar 

  12. Bastami KD, Bagheri H, Kheirabadi V, Zaferani GG, Teymori MB, Hamzehpoor A, Soltani F, Haghparast S, Harami SRM, Ghorghani NF, Ganji S (2014) Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Mar Poll Bull 81:262–267

    CAS  Article  Google Scholar 

  13. Berriolo G, Sirito G (1985) Studio Generale sul regime delle spiagge laziali e delle isole pontine. Italia, Savona: Studio Volta, Regione Lazio: 97–99

  14. Carboni MG, Matteucci R, Tortora P (1980) La piattaforma costiera dell’alto Lazio: dalla foce del fiume Marta a Torre Sant’Agostino. Atti Soc Tosc Sci Nat Mem 87:193–230

    Google Scholar 

  15. Chaudhari PR, Gupta R, Gajghate DG, Wate SR (2012) Heavy metal pollution of ambient air in Nagpur City. Environ Monit Assess 184:2487–2496

    CAS  Article  Google Scholar 

  16. Chiocci FL, La Monica GB (1996) Elementi di oceanografia fisica e chimica, biologia e geologia marina, clima meteomarino, dinamica dei sedimenti ed apporti continentale: analisi sismostratigrafica della piattaforma continentale. In: Il Mare del Lazio. Regione Lazio, Roma, Tip. Borgia, pp 40–61

  17. De Rita D, Fabbri M, Mazzini I, Paccara P, Sposato A, Trigari A (2002) Volcanoclastic sedimentation in coastal environmental: the interplay between volcanism and Quaternary sea level change (Central Italy). Quat Int 95–96:141–154

    Article  Google Scholar 

  18. Di Leonardo R, Tranchida G, Bellanca A, Neri R, Angelone M, Mazzola S (2006) Mercury levels in sediments of central Mediterranean Sea: a 150 + year record from box-cores recovered in the Strait of Sicily. Chemosphere 65:2366–2376

    Article  Google Scholar 

  19. Ferrara R, Ceccarini C, Lanzillotta E, Gardfeldt K, Sommar J, Horvat M, Logar M, Fajon V, Kotnik J (2003) Profiles of dissolved gaseous mercury concentration in the Mediterranean seawater. Atmos Environ 37(S1):S85–S92

    CAS  Article  Google Scholar 

  20. Goodsite ME, Plane JMC, Skov H (2004) A theoretical study of the oxidation of Hg0 to HgBr 2 in the troposphere. Environ Sci Technol 38:1772–1786

    CAS  Article  Google Scholar 

  21. Haykiri-Acma H, Yaman S, Ozbek N, Kucukbayrak S (2011) Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel 90:3447–3455

    CAS  Article  Google Scholar 

  22. Horvat M, Kotnik J, Logar M, Fajon V, Zvonaric T, Pirrone N (2003) Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmos Environ 37(S1):S93–S108

    CAS  Article  Google Scholar 

  23. Huang KM, Lin S (2003) Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin. Taiwan. Chemosphere 53:1113–1121

    CAS  Article  Google Scholar 

  24. Kreidie N, Armiento G, Cibin G, Cinque G, Crovato C, Nardi E, Pacifico R, Cremisini C, Mottana A (2011) An integrated geochemical and mineralogical approach for the evaluation of arsenic mobility in mining soils. J Soils Sed 11:37–52

    CAS  Article  Google Scholar 

  25. La Monica GB, Raffi R (1996) Morfologia e sedimentologia della spiaggia e della piattaforma continentale interna. In: Il Mare del Lazio. Regione Lazio Assessorato Opere e Reti di Servizi e Mobilità. Università degli Studi La Roma, Sapienza, pp 62–105

  26. Leoni L, Sartori F (1996) Heavy metals and arsenic in sediments from the continental shelf of the Northern Tyrrhenian/Eastern Ligurian Seas. Mar Environ Res 41:73–98

    CAS  Article  Google Scholar 

  27. Ligero RA, Ramos-Lerate I, Barrera M, Casas-Ruiz M (2001) Relationships between sea-bed radionuclide activities and some sedimentological variables. J Environ Rad 57:7–19

    CAS  Article  Google Scholar 

  28. Long ER, Morgan LG (1990) The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. NOAA Office of Oceanography and Marine Assessment, Seattle, WA: 220

  29. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  30. Maffucci F, Caurant F, Bustamante P, Bentivegna F (2005) Trace element (Cd, Cu, Hg, Se, Zn) accumulation and tissue distribution in loggerhead turtles (Caretta caretta) from the western Mediterranean Sea (southern Italy). Chemosphere 58:535–542

    CAS  Article  Google Scholar 

  31. Mirlean N, Lamed ST, Nikora V, Tavares Ku¨ tter V (2005) Mercury in lakes and lake fishes on a conservation-industry gradient in Brazil. Chemosphere 60:226–236

    CAS  Article  Google Scholar 

  32. Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442

    CAS  Article  Google Scholar 

  33. Muñoz-Barbosa A, Gutiérrez-Galindo EA, Daesslé LW, Orozco-Borbón MV, Segovia- Zavala JA (2012) Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México. Mar Pollut Bull 64:405–409

    Article  Google Scholar 

  34. National Entity for Electricity (ENEL) (2014) Impianto termoelettrico Torrevaldaliga Nord. Dischiarazione Ambientale https://www.enel.it/itit/documents/azienda/ambiente/dichiarazioni_ambientali/Dichiarazione_Ambientale__Aggiornamento_2014.pdf

  35. Noli A, De Girolamo P, Sammarco P (1996) Parametri meteomarini e dinamica costiera: oceanografia e chimica, biologia e geologia marina, clima meteomarino, dinamica dei sedimenti e apporti continentali. In: Il Mare del Lazio. Ass. Opere e reti di servizi e mobilità, Regione Università degli Studi di La Sapienza, Lazio

  36. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    CAS  Article  Google Scholar 

  37. Piazzolla D, Scanu S, Frattarelli FM, Mancini E, Tiralongo F, Brundo MV, Tibullo D, Pecoraro R, Copat C, Ferrante M, Marcelli M (2015) Trace-Metal Enrichment and Pollution in Coastal Sediments in the Northern Tyrrhenian Sea. Italy. Arch Environ Contam Toxicol 69(4):470–481

    CAS  Article  Google Scholar 

  38. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    CAS  Article  Google Scholar 

  39. Rimondi V, Gray JE, Costagliola P, Vaselli O, Pierfranco L (2012) Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 414:318–327

    CAS  Article  Google Scholar 

  40. Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manag 90:3382–3390

    CAS  Article  Google Scholar 

  41. Scanu S (2012). Geocronologia (210Pb) dei sedimenti recenti della piattaforma costiera del Lazio settentrionale: stima del rateo di accumulo sedimentario e distribuzione spaziale e temporale delle concentrazioni di alcuni metalli in traccia (As, Hg, Pb, Al e Zn). Ph.D. thesis University of Tuscia, Viterbo, pp 9–12

  42. Scanu S, Paladini de Mendoza F, Piazzolla D, Marcelli M (2015a) Anthropogenic impact on river basins: temporal evolution of sediment classes and accumulation rates in the northern Tyrrhenian Sea. Italy. Oceanol Hydrobiol Stud 44:74–86

    CAS  Google Scholar 

  43. Scanu S, Soetebier S, Piazzolla D, Tiralongo F, Mancini E, Romano N, Marcelli M (2015b) Concentrations of As, Cd, Cr, Ni and Pb in the echinoid Paracentrotus lividus on the coast of Civitavecchia, northern Tyrrhenian Sea, Italy. Reg Stud Mar Sci 1:7–17

    Article  Google Scholar 

  44. Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, Jaegle L, Sunderland EM (2008) Global 3-D land-ocean atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob Biogeochem Cycle 22 GB2011

  45. Spadoni M, Voltaggio M, Cavarretta G (2005) Recognition of areas of anomalous concentration of potentially hazardous elements by means of a subcatchment-based discriminant analysis of stream sediments. J Geoch Explor 87:83–91

    CAS  Article  Google Scholar 

  46. Spagnoli F, Dinelli E, Giordano P, Marcaccio M, Zaffagnini F, Frascari F (2014) Sedimentological, biogeochemical and mineralogical facies of Northern and Central Western Adriatic Sea. J Mar Syst 139:183–203

    Article  Google Scholar 

  47. Tang Q, Liu G, Zhou C, Sun R (2013) Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China. Fuel 107:315–322

    CAS  Article  Google Scholar 

  48. Turekian KK, Wedepohl DH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geo Soc Am 72:175–192

    CAS  Article  Google Scholar 

  49. Vald’es J, Vargas G, Sifeddine A, Ortlieb L, Guinez M (2005) Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23S), Northern Chile: geochemical and statistical approach. Mar Poll Bull 50:1558–1568

    Article  Google Scholar 

  50. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    CAS  Article  Google Scholar 

  51. Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P (2003) Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 51:633–642

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Scanu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scanu, S., Piazzolla, D., Frattarelli, F.M. et al. Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy. Bull Environ Contam Toxicol 96, 630–637 (2016). https://doi.org/10.1007/s00128-016-1776-9

Download citation

Keywords

  • Mercury
  • Sediments
  • Tyrrhenian sea
  • Geochemical anomaly
  • Anthropic impact