Skip to main content

Genotoxic Effects Induced by Cd+2, Cr+6, Cu+2 in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae)

Abstract

Genotoxic effects of Cd+2, Cr+6, and Cu+2 on the gill and liver of the Argentinean Silverside (Odontesthes bonariensis) were studied using the comet assay and in relation with the metal tissue accumulation. Fish were exposed to three waterborne concentrations of each metal for 2 and 16 days. Genotoxicity was assessed by the single cell gel electrophoresis (comet assay). After 2 days, significant increase of the genetic damage index (GDI) was only observed in the gill of fish exposed to Cr+6 and Cu+2, and the LOECs were 2160 nM and 921.1 nM, respectively. The gill LOEC for Cd+2 by 16 days was 9.4 nM. In the liver, LOECs were obtained only for Cd+2 and Cr+6 and were 9.4 and 2160 nM, respectively. The three metals were able to induce genotoxic effects at environmentally relevant concentrations and the gill was the most sensitive organ.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahmed MK, Parvin E, Arif M et al (2010) Measurements of genotoxic potential of cadmium in different tissues of fresh water climbing perch Anabas testudineus (Bloch), using the comet assay. Environ Toxicol Pharmacol 30:80–84

    CAS  Article  Google Scholar 

  2. Ahmed MK, Kundu GK, Al-Mamun MH et al (2013) Chromium (VI) induced acute toxicity and genotoxicity in freshwater stinging catfish, Heteropneustes fossilis. Ecotoxicol Environ Saf 92:64–70

    CAS  Article  Google Scholar 

  3. Arkhipchuk VV, Garanko NN (2005) Using the nucleolar biomarker and the micronucleus test on in vivo fish fin cells. Ecotoxicol Environ Saf 62:42–52

    CAS  Article  Google Scholar 

  4. Avigliano E, Schenone NF, Volpedo AV et al (2015) Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ 506–507:102–108

    Article  Google Scholar 

  5. Bopp S, Abicht H, Knauer K (2008) Copper-induced oxidative stress in rainbow trout gill cells. Aquat Toxicol 86:197–204

    CAS  Article  Google Scholar 

  6. Cambier S, Gonzalez P, Durrieu G, Bourdineaud JP (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319

    CAS  Article  Google Scholar 

  7. Carriquiriborde P, Ronco A (2002) Sensitivity of the neotropical teleost Odonthestes bonariensis (pisces, Atherinidae) to chromium (VI), copper (II), and cadmium (II). Bull Environ Contam Toxicol 69:294–301

    CAS  Article  Google Scholar 

  8. Carriquiriborde P, Ronco AE (2008) Distinctive accumulation patterns of Cd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis). Aquat Toxicol 86:313–322

    CAS  Article  Google Scholar 

  9. Collins AR, Oscoz AA, Brunborg G et al (2008) The comet assay: topical issues. Mutagenesis 23:143–151

    CAS  Article  Google Scholar 

  10. Deventer K (1996) Detection of genotoxic effects on cells of liver and gills of B. rerio by means of single cell gel electrophoresis. Bull Environ Contam Toxicol 56:911–918

    CAS  Article  Google Scholar 

  11. Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res Mol Mech Mutagen 733:69–77

    Article  Google Scholar 

  12. Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681:80–92

    CAS  Article  Google Scholar 

  13. Handy RD (1992) The assessment of episodic metal pollution. I. Uses and limitations of tissue contaminant analysis in rainbow trout (Oncorhynchus mykiss) after short waterborne exposure to cadmium or copper. Arch Environ Con Tox 22(1):74–81

    CAS  Article  Google Scholar 

  14. Jindal R, Verma S (2015) In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicol Environ Saf 118:1–10

    CAS  Article  Google Scholar 

  15. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    CAS  Article  Google Scholar 

  16. Merlo C, Abril A, Amé MV et al (2011) Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Sci Total Environ 409:5034–5045

    CAS  Article  Google Scholar 

  17. Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188:276–288

    CAS  Article  Google Scholar 

  18. Rigacci LN, Giorgi ADN, Vilches CS et al (2013) Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina. Environ Monit Assess 185:9161–9168

    CAS  Article  Google Scholar 

  19. Russo C, Rocco L, Morescalchi MA, Stingo V (2004) Assessment of environmental stress by the micronucleus test and the Comet assay on the genome of teleost populations from two natural environments. Ecotoxicol Environ Saf 57:168–174

    CAS  Article  Google Scholar 

  20. Sanchez-Galan S, Linde AR, Garcia-Vazquez E (1999) Brown trout and European minnow as target species for genotoxicity tests: differential sensitivity to heavy metals. Ecotoxicol Environ Saf 43:301–304

    CAS  Article  Google Scholar 

  21. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  Article  Google Scholar 

  22. Somoza GM, Miranda LA, Berasain GE et al (2008) Historical aspects, current status and prospects of pejerrey aquaculture in South America. Aquac Res 39:784–793

    Article  Google Scholar 

  23. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164

    Google Scholar 

  24. USEPA (1991) Methods for the determination of metals in environmental samples. U.S. Environmental Protection Agency. EPA/600/4-91/010, Washington

  25. Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res 698:43–51

    CAS  Article  Google Scholar 

  26. Villar C, Stripeikis J, Tudino M et al (1999) Trace metal concentrations in coastal marshes of the Lower Paraná River and the Río de la Plata Estuary. Hydrobiologia 397:187–195

    CAS  Article  Google Scholar 

  27. Yadav KK, Trivedi SP (2009) Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere 77:1495–1500

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was funded by CONICET and ANPCyT of Argentina. We acknowledge the Buenos Aires Province Ministry of Agriculture Affairs, particularly to the Chascomús Aquaculture Station, for providing the O. bonariensis larvae.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Carriquiriborde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasulla, J., Picco, S.J., Carriquiriborde, P. et al. Genotoxic Effects Induced by Cd+2, Cr+6, Cu+2 in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae). Bull Environ Contam Toxicol 96, 591–595 (2016). https://doi.org/10.1007/s00128-016-1774-y

Download citation

Keywords

  • Heavy metals
  • Genotoxicity
  • Pejerrey
  • “Río de la Plata Basin”