Skip to main content

Use of cadA-Specific Primers and DNA Probes as Tools to Select Cadmium Biosorbents with Potential in Remediation Strategies

Abstract

Biosorption, using cadmium-resistant bacterial isolates, is often regarded as a relatively inexpensive and efficient way of cleaning up wastes, sediments, or soils polluted with cadmium. Therefore, many efforts have been devoted to the isolation of cadmium-resistant isolates for the efficient management of cadmium remediation processes. However, isolation, identification and in situ screening of efficient cadmium-resistant isolates are primary challenges. To overcome these challanges, in this study, cadA, cadmium resistance coding gene, specific primers and DNA probes were used to identify and screen cadmium-resistant bacteria in the cadmium-polluted river waters through polymerase chain reaction (PCR) and fluorescein in situ hybridization (FISH). PCR amplification of the cadA amplicon coupled with 16S rRNA sequencing revealed various gram-positive and -negative bacterial isolates harboring cadA. Accordingly, a cadA-mediated DNA probe was prepared and used for in situ screening of cadmium-resistant isolates from water samples collected from cadmium-polluted river waters. The FISH analyses of cadA probe showed highly specific and efficient hybridization with cadA harboring isolates. The use of primers and DNA probes specific for cadA gene seems to be very helpful tools for the selection and screening of cadmium biosorbents with potential to be used in the remediation of cadmium-polluted sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alonso A, Sanchez P, Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782

    CAS  Article  Google Scholar 

  2. Amann RI (1995) In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkerman ADL, van Elsas JD, de Brujin FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–15

    Google Scholar 

  3. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  4. Amuda OS, Amoo IA, Ipinmoroti KO, Ajayi OO (2006) Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J Appl Sci Environ Manag 10:159–162

    Google Scholar 

  5. Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  Google Scholar 

  6. Arslan F, Saltoglu N, Mete B, Mert A (2011) Recurrent Staphylococcus warnerii prosthetic valve endocarditis: a case report and review. Ann Clin Microbiol Antimicrob 10:14

    Article  Google Scholar 

  7. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucl Acids Res 30:17–20

    CAS  Article  Google Scholar 

  8. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    CAS  Article  Google Scholar 

  9. Brumbaugh WG, Schmitt CJ, May TW (2005) Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of north eastern Oklahoma-sampling of blood, carcass, and liver for aquatic biomonitoring. Arch Environ Contam Toxicol 49:76–88

    CAS  Article  Google Scholar 

  10. Cerit S, Yilmaz F, Icgen B (2015) Challenging tin toxicity by a novel strain isolated from fresh waters. Desalin Water Treat 53:3244–3252

    CAS  Article  Google Scholar 

  11. Chou JH, Sheu SY, Lin KY, Chen WM, Arun AB, Young CC (2007) Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Inter J Syst Evol Microbiol 57:887–891

    CAS  Article  Google Scholar 

  12. Cunha MLRS, Sinzato YK, Silveira LV (2004) Comparison of methods for the identification of coagulase-negative staphylococci. Mem Inst Oswaldo Cruz 99:855–860

    Article  Google Scholar 

  13. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  Article  Google Scholar 

  14. Dib JR, Wagenknecht M, Hill RT, Farías ME, Meinhardt F (2010) First report of linear megaplasmids in the genus Micrococcus. Plasmid 63:40–45. doi:10.1016/j.plasmid.2009.10.001

    CAS  Article  Google Scholar 

  15. Doughari HJ, Ndakidemi PA, Human IS, Benade S (2011) The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 26:101–112

    Article  Google Scholar 

  16. Faroon O, Ashizawa A, Wright S et al (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (US), Atlanta

    Google Scholar 

  17. Habib-Ur-Rahman MS, Imtiaz A, Sher S, Hameedullah H (2006) Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. J Chin Chem Soc 53:1045–1052

    Article  Google Scholar 

  18. He D, Gu S, Ming Ma M (2007) Simultaneous removal and recovery of cadmium (II) and CN from simulated electroplating rinse wastewater by a strip dispersion hybrid liquid membrane (SDHLM) containing double carrier. J Membr Sci 305:36–47

    CAS  Article  Google Scholar 

  19. Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Niedojadło K, Buszewski B (2015) Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environ Sci Pollut Res Int 22:3055–3067

    CAS  Article  Google Scholar 

  20. Icgen B, Yilmaz F (2014) Co-occurrence of antibiotic and heavy metal resistance in Kızılırmak river isolates. Bull Environ Contam Toxicol 93:735–743

    CAS  Article  Google Scholar 

  21. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  22. Kalmbach S, Manz W, Szewzyk U (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl Environ Microbiol 63:4164–4170

    CAS  Google Scholar 

  23. Kheriji J, Tabassi D, Hamrouni B (2015) Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci Technol 72:1206–1216

    CAS  Article  Google Scholar 

  24. Klaassen CD (2001) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGaw-Hill, New York, pp 811–869

    Google Scholar 

  25. Kocaoba S (2007) Comparison of Amberlite IR 120 and dolamite’s performance for the removal of heavy metals. J Hazard Mater 147:488–496

    CAS  Article  Google Scholar 

  26. Ku Y, Jung IL (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142

    CAS  Article  Google Scholar 

  27. Kumar V, Kumar M, Jha MK, Jeong J, Jae-chun Lee JC (2009) Solvent extraction of cadmium from sulfate solution with di-(2-ethylhexyl)phosphoric acid diluted in kerosene. Hydrometallurgy 96:230–234

    CAS  Article  Google Scholar 

  28. Kuntz RL, Hartel PG, Rodgers K, Segars WI (2004) Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Res 38:3351–3557

    Article  Google Scholar 

  29. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959

    CAS  Article  Google Scholar 

  30. Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67:1437–1444

    CAS  Article  Google Scholar 

  31. Li B, Irvin S, Baker B (2007) The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low/mid/high concentrated wastewater. Environ Sci Eng 6:651–663

    CAS  Article  Google Scholar 

  32. Loy A, Horn M, Wagner M (2003) ProbeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31:514–516

    CAS  Article  Google Scholar 

  33. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    CAS  Article  Google Scholar 

  34. Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel JC, Le Quéré A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

    CAS  Article  Google Scholar 

  35. Nadeem M, Shabbir M, Abdullah MA, Shah SS, McKay G (2009) Sorption of cadmium from aqueous solution by surfactant modified carbon adsorbents. Chem Eng J 148:365–370

    CAS  Article  Google Scholar 

  36. Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618

    CAS  Article  Google Scholar 

  37. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CAS  Article  Google Scholar 

  38. Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548

    CAS  Article  Google Scholar 

  39. Oger C, Berthe T, Quillet L, Barray S, Chioleau JF, Petit F (2001) Estimation of the abundance of the cadmium resistance gene cadA in microbial communities in polluted estuary. Res Microbiol 152:671–678

    CAS  Article  Google Scholar 

  40. Oger C, Mahillon J, Petit F (2003) Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiol Rev 43:173–183

    CAS  Article  Google Scholar 

  41. Pages D, Rose J, Conrod S, Cuine S, Carrier P, Heulin T, Achouak W, Ward N (2008) Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS ONE. doi:10.1371/journal.pone.0001539

    Google Scholar 

  42. Pernthaler J, Alfreider A, Posch T, Andreatta S, Psenner R (1997) In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Appl Environ Microbiol 63:4778–4783

    CAS  Google Scholar 

  43. Rangel-Mendez JR, Tai MH, Streat M (2000) Removal of cadmium using electrochemically oxidized activated carbon. Process Saf Environ Protect 78:143–148

    CAS  Article  Google Scholar 

  44. Rao KS, Mohapatra M, Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2:81–103

    Google Scholar 

  45. Schleifer KH, Amann RI, Ludwig W, Rothemund C, Springer N, Dorn S (1992) Nucleic acid probes for the identification and in situ detection of Pseudomonads. In: Galli E, Silver S, Withold B (eds) Pseudomonas: molecular and biology biotechnology. Washington American Society of Microbiology, Washington, DC, pp 127–134

    Google Scholar 

  46. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483

    CAS  Article  Google Scholar 

  47. Tan SC, Yiap BC (2009) DNA, RNA and protein extraction: the past and the present. J Biomedicine Biotech. doi:10.1155/2009/574398

  48. Wagner M, Erhart R, Manz W, Amann RI, Lemmer H, Wedi D et al (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring win activated sludge. Appl Environ Microbiol 60:792–800

    CAS  Google Scholar 

  49. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    CAS  Article  Google Scholar 

  50. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  Article  Google Scholar 

  51. Younesi SR, Alimadadi H, Alamdari EK, Marashi SPH (2006) Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions. Hydrometallurgy 84:155–164

    CAS  Article  Google Scholar 

  52. Zhang Y, Zhang H, Li X, Su Z, Zhang C (2008) The cadA gene in cadmium-resistant bacteria from cadmium-polluted soil in the Zhangshi area of Northeast China. Curr Microbiol 56:236–239

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported through a Research Fund Project (BAP-03-11-2014-003) by Middle East Technical University, Ankara-Turkey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bulent Icgen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Icgen, B., Yilmaz, F. Use of cadA-Specific Primers and DNA Probes as Tools to Select Cadmium Biosorbents with Potential in Remediation Strategies. Bull Environ Contam Toxicol 96, 685–693 (2016). https://doi.org/10.1007/s00128-016-1767-x

Download citation

Keywords

  • Cadmium biosorbents
  • cadA
  • cadA primers
  • cadA probe