Skip to main content

Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media

Abstract

2,4-bis(Isopropylamino)-6-methylthio-s-triazine (prometryn) poses a risk to aquatic environments in several countries, including China, where its use is widespread, particularly due to its chemical stability and biological toxicity. Vetiver grass (Chrysopogon zizanioides L.) was tested for its potential for phytoremediation of prometryn. Vetiver grass was grown in hydroponic media in a greenhouse, in the presence of prometryn, with appropriate controls. Plant uptake and removal of prometryn from the media were monitored for a period of 67 days. The results showed that the removal of the prometryn in the media was expedited by vetiver grass. The removal half-life (t1/2) was shortened by 11.5 days. Prometryn removal followed first-order kinetics (Ct = 1.8070e−0.0601t). This study demonstrated the potential of vetiver grass for the phytoremediation for prometryn.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

USEPA:

United States Environment Protection Agency

GC-NCD:

Gas Chromatograph-Nitrogen Chemiluminescence detection

TF:

Transfer coefficient = Concentration in shoot/Concentration in root

References

  • Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183. doi:10.1016/j.envpol.2009.02.014

    Article  CAS  Google Scholar 

  • Bogialli S, Bruno M, Curini R, Corcia AD, Fanali C, Laganà A (2006) Monitoring algal toxins in lake water by liquid chromatography tandem mass spectrometry. Environ Sci Technol 40(9):2917–2923

    Article  CAS  Google Scholar 

  • Bonora S, Benassi E, Maris A, Tugnoli V, Ottani S, Di Foggia M (2013) Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides. J Mol Struct 1040:139–148. doi:10.1016/j.molstruc.2013.02.025

    Article  CAS  Google Scholar 

  • Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112

    Article  CAS  Google Scholar 

  • Cao J, Yin XL, Bu WA, Chen F, Yang H (2007) Study on the determination of prometryne residues in environment. J Anal Sci 23(4):397–400

    CAS  Google Scholar 

  • Chen JJ (2012) Screening characterization and mechanism of plants to degrade Atrazine. Dissertation, Yunnan Agricultural University

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375. doi:10.1016/j.chemosphere.2005.02.035

    Article  CAS  Google Scholar 

  • Dalton PA, Smith RJ, Truong PNV (1996) Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics. Agric Water Manag 31:91–104. doi:10.1016/0378-3774(95)01230-3

    Article  Google Scholar 

  • Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycling. Int J Phytoremediat 15:343–351

    Article  CAS  Google Scholar 

  • Đikić D (2014) Prometryn. In: Wexler P (ed) Encyclopedia of Toxicology, 3rd edn. Academic Press, Oxford, pp 1077–1081. doi:10.1016/B978-0-12-386454-3.00533-9

    Google Scholar 

  • Dong LX, Chen L, Li Z, Gao HW, Li JH (2006) Quality assurance/quality control for monitoring and analysis of trace triazines in water. J Saf Environ 6:35–38

    CAS  Google Scholar 

  • Gilliom RJ (2001) Pesticides in the hydrologic system – what do we know and what’s next? Hydrol Process 15:3197–3201

    Article  Google Scholar 

  • Hinman ML, Klaine SJ (2002) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla verticillata Royle. Environ Sci Technol 26:609–613

    Article  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi AH (2007) PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA. 2007), http://www.pesticideinfo.org

  • Kiely T, Donaldson D, Grube A (2004) Pesticide industry sales and usage: 2000 and 2001 market estimates. Office of prevention, pesticides, and toxic substances. USEPA, Washington

    Google Scholar 

  • Li QP, Qin D, Cui WH (2014a) Warning analysis on excess prometryne residues of aquatic products in China. J Food Saf Qual 5:108–112

    CAS  Google Scholar 

  • Li QK, Zhou BY, Tang JJ, Chen YQ (2014b) Degradation of prometryn by TiO2 visible photocatalysis with H2O2 assistance. J Zhengzhou Univ Eng Sci 1:55–59. doi:10.3969/j.issn:1671-6833

    Google Scholar 

  • Ma J, Tong S, Wang P, Chen J (2010) Toxicity of seven herbicides to the three cyanobacteria Anabaena flos-aquae, Microcystis flos-aquae and Mirocystis aeruginosa. Int J Environ Res 4:347–352

    CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106

    Article  CAS  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzguébel JP (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215

    Article  CAS  Google Scholar 

  • Orton F, Lutz I, Kloas W, Routledge EJ (2009) Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence. Environ Sci Technol 43:2144–2150

    Article  CAS  Google Scholar 

  • Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Makris KC, Papadopoulou-Mourkidou E (2015) A pesticide monitoring survey in rivers and lakes of Northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol Environ Saf 116:1–9. doi:10.1016/j.ecoenv.2015.02.033

    Article  CAS  Google Scholar 

  • Paquin D, Ogoshi R, Campbell S, Li QX (2002) Bench-scale phytoremediation of polycyclic aromatic hydrocarbon-contaminated marine sediment with tropical plants. Int J Phytoremediat 4:297–313

    Article  CAS  Google Scholar 

  • Ren C, Tian X, Zhang H (2013) Determination of trazine herbicides in seawater using solid phase extraction-UPLC-MS/MS. J Chin Mass Spectrom Soc 34:353–361

    CAS  Google Scholar 

  • Shen WJ, Yang WQ, Zhao ZY, Shen CY, Xu JZ, Ding T (2008) Determination of prometryne in seaweed by gas chromatography-mass spectrometry. Chin J Anal Lab 27(2):84–872

    CAS  Google Scholar 

  • Shi Y, Burns M, Ritchie RJ, Crossan A, Kennedy IR (2014) Probabilistic risk assessment of diuron and prometryn in the Gwydir River catchment, Australia, with the input of a novel bioassay based on algal growth. Ecotoxicol Environ Saf 106:213–219

    Article  CAS  Google Scholar 

  • Sojinu OS, Sonibare OO, Ekundayo OO, Zeng EY (2012) Assessment of organochlorine pesticides residues in higher plants from oil exploration areas of Niger Delta, Nigeria. Sci Total Environ 433:169–177. doi:10.1016/j.scitotenv.2012.06.043

    Article  CAS  Google Scholar 

  • Stara A, Kristan J, Zuskova EJV (2013) Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Pestic Biochem Physiol 105:18–23

    Article  CAS  Google Scholar 

  • Stone WW, Gilliom RJ, Ryberg KR (2014) Pesticides in US streams and rivers: occurrence and trends during 1992–2011. Environ Sci Technol 48:11025–11030

    Article  CAS  Google Scholar 

  • Sun SS, Li YM, Lv Ping, Punamiya P, Sarkar D, Dan YM, Ma JR, Zheng Y (2015) Determination of prometryn in vetiver grass and water using gas chromatography-nitrogen chemiluminescence detection (GC-NCD). J Chromatogr Sci. doi:10.1093/chromsci/bmv108

    Google Scholar 

  • Topp E, Scheunert I, Attar A, Korte F (1986) Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil. Ecotoxicol Environ Saf 11:219–228. doi:10.1016/0147-6513(86)90066-7

    Article  CAS  Google Scholar 

  • USEPA (1996) United States office of prevention, pesticides and toxic substances (7508 W), EPA 738-R-95-033, agency reregistration eligibility decision (RED) for prometryn. http://archive.epa.gov/pesticides/reregistration/web/pdf/0467.pdf. Accessed 24 Nov 2015

  • USEPA (2013) Label amendment (Directions for Use and Storage and Disposal), USEPA Reg. No. 100-542, Washington, DC 20460. doi:http://www3.epa.gov/pesticides/chem_search/ppls/000100-00542-20130912.pdf. Accessed 24 Nov 2015

  • Vryzas Z, Alexoudis C, Vassiliou G, Galanis K, Papadopoulou-Mourkidou E (2011) Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicol Environ Saf 74:174–181

    Article  CAS  Google Scholar 

  • Wang Y, Zhang G, Wang L (2014) Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies. Pestic Biochem Physiol 108:66–73. doi:10.1016/j.pestbp.2013.12.006

    Article  CAS  Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2000) Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Arch Environ Contam Toxicol 39:282–288

    Article  CAS  Google Scholar 

  • Wong MH, Fung KF (2001) Effects of soil pH on the uptake of Al, F and other elements by tea plants. J Sci Food Agric 82:146–152

    Google Scholar 

  • Zhang Q, Wu W (2014) Research advance in eco-toxical effects and microbial degradation of prometryne in aquaculture water. Biol Disaster Sci 37:64–69

    Google Scholar 

  • Zhang W, Zhang ZM, Wang JJ, Qin Z, Gao LM (2007) Progress in research and application of phytoremediation for organic pesticides. Agrochemicals 46:217–22612

    CAS  Google Scholar 

  • Zhou J, Chen J, Cheng Y, Li D, Hu F, Li H (2009) Determination of prometryne in water and soil by HPLC-UV using cloud-point extraction. Talanta 79:189–193

    Article  CAS  Google Scholar 

  • Zhou J, Hu F, Jiao J, Liu M, Li H (2012) Effects of bacterial-feeding nematodes and prometryne-degrading bacteria on the dissipation of prometryne in contaminated soil. J Soils Sediments 12:576–585

    Article  CAS  Google Scholar 

  • Zhou JH, Sun XW, Hu F, Li HX (2013) Isolation screening and identification of prometryne -degrading bacteria and their degrading characteristics. Environ Sci Technol 34:2894–2898

    CAS  Google Scholar 

  • Zhu N, Xia X, Du X, An F, Xu X (2003) The disappearance and transfer behavior of PCBs bestrewed into semi-field soil systems. Chin J Environ Sci 24(4):158–160

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fund of China (No. NSFC31460551, NSFC41461059, NSFC41563014). The authors thank Dr. Wei Zhou and Dr Rui Shi (SWFU, P.R.China) for their help. Dr Michael A. Fullen (UoW, UK) for linguistic modification. The tobacco inspection laboratory (Yunnan Administration for Entry-exit Inspection and Quarantine, P.R.China) for providing GC-NCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zheng.

Additional information

Y. Zheng and R. Datta contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S.X., Li, Y.M., Zheng, Y. et al. Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media. Bull Environ Contam Toxicol 96, 550–555 (2016). https://doi.org/10.1007/s00128-016-1737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1737-3

Keywords

  • Vetiver grass
  • Prometryn
  • Phytoremediation
  • Hydroponic study