Effects of the Pyrethroid Esfenvalerate on the Oligochaete, Lumbriculus variegatus

  • R. Rosa
  • M. D. Bordalo
  • A. M. V. M. Soares
  • J. L. T. Pestana
Article

Abstract

Esfenvalerate is a neurotoxic pyrethroid insecticide widely used for agricultural and residential purposes and is considered toxic to nontarget organisms such as fish and aquatic invertebrates. In this study, we evaluated the toxicity of esfenvalerate on the aquatic oligochaete Lumbriculus variegatus. In the acute test, organisms showed visible signs of stress but no LC50 value could be determined. In the 28-day chronic test, a significant decrease in reproduction was observed with a NOEC value of 0.25 µg/kg and a LOEC value of 2.34 µg/kg. As for biomass per worm, a significant decrease was also observed with a NOEC value of 2.34 µg/kg and a LOEC value of 36.36 µg/kg. Reproductive impairment and reductions in biomass of L. variegatus exposed to environmentally realistic concentrations of esfenvalerate observed in laboratory tests suggests potential deleterious effects of this pyrethroid on oligochaete natural populations.

Keywords

Insecticides Ecotoxicity Sublethal effects Freshwater invertebrates 

References

  1. Ǻkerblom N, Arbjörk C, Hedlund M, Goedkoop M (2008) Deltamethrin toxicity to the midge Chironomus riparius Meigen—effects of exposure scenario and sediment quality. Ecotoxicol Environ Saf 70:53–60CrossRefGoogle Scholar
  2. Alexander AC, Culp JM, Liber K, Cessna AJ (2007) Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes. Environ Toxicol Chem 26(8):1726–1732CrossRefGoogle Scholar
  3. Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, CA, USA. Environ Toxicol Chem 24:966–972CrossRefGoogle Scholar
  4. ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. American Standards for Testing and Materials, PhiladelphiaGoogle Scholar
  5. ASTM (2010) Standard test methods for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates (ASTM E1706-00). American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards Volume 11.05, West ConshohockenGoogle Scholar
  6. Bacey J, Spurlock F, Starner K, Feng H, Hsu J, White J, Tran DM (2005) Residues and toxicity of esfenvalerate and permethrin in water and sediment, in tributaries of the Sacramento and San Joaquin Rivers, California, USA. Bull Environ Contam Toxicol 74:864–871CrossRefGoogle Scholar
  7. Bouldin JL, Milam CD, Farris JL, Moore MT, Smith S Jr, Cooper CM (2004) Evaluating toxicity of Asana XL® (esfenvalerate) amendments in agricultural ditch mesocosms. Chemosphere 56:677–683CrossRefGoogle Scholar
  8. Brady JA, Wallender WW, Werner I, Fard BM, Zalom FG, Oliver MN, Wilson BW, Mata MM, Henderson JD, Deanovic LA, Upadhaya S (2006) Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agric Ecosyst Environ 115(1–4):56–68CrossRefGoogle Scholar
  9. Brander SM, Mosser CM, Geist J, Hladik ML, Werner I (2012) Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata. Ecotoxicology 21:2409–2418CrossRefGoogle Scholar
  10. Cánepa A, Basack SB, Casabé NB, Guerrero NRV (2013) Combined effects of technical grade fenitrothion, humic acids and particulate matter on cholinesterase activity in freshwater invertebrates. J Soils Sediments 13:775–782CrossRefGoogle Scholar
  11. Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behavior as a biomarker: a study case with imidacloprid. Pedobiologia 47:542–547Google Scholar
  12. Cold A, Forbes VE (2004) Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquat Toxicol 67:287–299CrossRefGoogle Scholar
  13. Connon RE, Geist J, Pfeiff J, Loguinov AV, D’Abronzo LS, Wintz H, Vulpe CD, Werner I (2009) Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae). BMC Genomics 10:608CrossRefGoogle Scholar
  14. Cooper C, Smith S, Moore M (2003) Surface water, ground water and sediment quality in three oxbow lake watersheds in the Mississippi Delta agricultural region: pesticides. J Ecol Environ Sci 29:171–184Google Scholar
  15. Domagalski JL, Weston DP, Zhang M, Hladik M (2010) Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA. Environ Toxicol Chem 29(4):813–823CrossRefGoogle Scholar
  16. Drewes CD (1997) Sublethal effects of environmental toxicants on oligochaete escape reflexes. Am Zool 37:346–353CrossRefGoogle Scholar
  17. Egeler P, Gilberg D, Fink G, Duis K (2010) Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus. J Soils Sediments 10:368–376CrossRefGoogle Scholar
  18. Fairchild J, La Point TW, Schwartz TR (1994) Effects of an herbicide and insecticide mixture in aquatic mesocosms. Arch Environ Contam Toxicol 27:527–533CrossRefGoogle Scholar
  19. Floyd EY, Geist JP, Werner I (2008) Acute, sublethal exposure to a pyrethroid insecticide alters behavior, growth, and predation risk in larvae of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 27(8):1780–1787CrossRefGoogle Scholar
  20. Forbes VE, Cold A (2005) Effects of the pyrethroid esfenvalerate on life-cycle traits and population dynamics of Chironomus riparius—importance of exposure scenario. Environ Toxicol Chem 24(1):78–86CrossRefGoogle Scholar
  21. Galluba S, Oetken M, Oehlmann J (2012) Comprehensive sediment toxicity assessment of Hessian surface waters using Lumbriculus variegatus and Chironomus riparius. J Environ Sci Health A 47:507–521CrossRefGoogle Scholar
  22. Kelley K, Starner K (2004) Preliminary results for study 219: monitoring surface waters and sediments of the Salinas and San Joaquin river basins for synthetic pyrethroid pesticides. Department of Pesticide Regulation, SacramentoGoogle Scholar
  23. Knillmann S, Stampfli NC, Beketov MA, Liess M (2012) Intraspecific competition increases toxicant effects in outdoor pond microcosms. Ecotoxicology 21:1857–1866CrossRefGoogle Scholar
  24. Kristoff G, Guerrero NV, D’Angelo AMP, Cochón AC (2006) Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus. Toxicology 222:185–194CrossRefGoogle Scholar
  25. Kristoff G, Guerrero NRV, Cochón AC (2008) Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus. Chemosphere 72:1333–1339CrossRefGoogle Scholar
  26. Kristoff G, Guerrero NRV, Cochón AC (2010) Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. Aquat Toxicol 96:115–123CrossRefGoogle Scholar
  27. Leppänen M, Kukkonen JVK (1998) Relationship between reproduction, sediment type and feeding activity of Lumbriculus variegatus (Müller): implications for sediment toxicity testing. Environ Toxicol Chem 17(11):2196–2202CrossRefGoogle Scholar
  28. Liu W, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem 23(1):7–11CrossRefGoogle Scholar
  29. Mekebri A, Crane DB, Blondina GJ, Oros DR, Rocca JL (2008) Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull Environ Contam Toxicol 80:455–460CrossRefGoogle Scholar
  30. Mount DR, Highland TL, Mattson VR, Dawson TD, Lott KG, Ingersoll CG (2006) Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet. Environ Toxicol Chem 25(10):2760–2767CrossRefGoogle Scholar
  31. Noskov YA (2011) Comparative sensitivity of the several zooplankton species (Cladocera, Copepoda) to sumicidine-alpha insecticide. Contemp Probl Ecol 4(4):373–378CrossRefGoogle Scholar
  32. O’Gara BA, Bohannon VK, Teague MW, Smeaton MB (2004) Copper-induced changes in locomotor behaviors and neuronal physiology of the freshwater oligochaete, Lumbriculus variegatus. Aquat Toxicol 69:51–66CrossRefGoogle Scholar
  33. O’Gara BA, Murray PM, Hoyt EM, Logan-Leigh Smeaton MB (2006) The Vitamin E analog Trolox reduces copper toxicity in the annelid Lumbriculus variegatus but is also toxic on its own. Neurotoxicology 27:604–616CrossRefGoogle Scholar
  34. OECD (2007) Sediment-water Lumbriculus toxicity test using spiked sediment. Guidelines for the testing of chemicals, no. 225. Organization of Economic Cooperation and Development (OECD), ParisCrossRefGoogle Scholar
  35. Phillips BM, Anderson BS, Hunt JW, Huntley SA, Tjeerdema RS, Kapellas N, Worcester K (2006) Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environ Toxicol Chem 25(6):1671–1676CrossRefGoogle Scholar
  36. Rasmussen JJ, Wiberg-Larsen P, Kristensen EA, Cedergreen N, Friberg N (2013) Pyrethroid effects on freshwater invertebrates: a meta-analysis of pulse exposures. Environ Pollut 182:479–485CrossRefGoogle Scholar
  37. Roman YE, De Schamphelaere KAC, Nguyen LTH, Janssen CR (2007) Chronic toxicity of copper to five benthic invertebrate in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment. Sci Total Environ 387:128–140CrossRefGoogle Scholar
  38. Samsøe-Petersen L, Gustavson K, Madsen T, Mogensen BB, Lassen P, Skjernov K, Christoffersen K, Jørgensen E (2001) Fate and effects of esfenvalerate in agricultural ponds. Environ Toxicol Chem 20(7):1570–1578CrossRefGoogle Scholar
  39. Sardo AM, Soares AMVM (2010) Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic oligochaete Lumbriculus variegatus. Arch Environ Contam Toxicol 58:648–656CrossRefGoogle Scholar
  40. Sardo AM, Soares AMVM, Gerhardt A (2007) Behavior, growth, and reproduction of Lumbriculus Variegatus (Oligochaetae) in different sediment types. Hum Ecol Risk Assess 13:519–526CrossRefGoogle Scholar
  41. Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus. Environ Pollut 152:322–329CrossRefGoogle Scholar
  42. Tanner DK, Knuth ML (1996) Effects of esfenvalerate on the reproductive success of the bluegill sunfish, Lepomis macrochirus in littoral enclosures. Arch Environ Contam Toxicol 31:244–251CrossRefGoogle Scholar
  43. USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. United States Environmental Protection Agency (USEPA), WashingtonGoogle Scholar
  44. Weston DP, You J, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38:2752–2759CrossRefGoogle Scholar
  45. Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27(4):953–962CrossRefGoogle Scholar
  46. Weston DP, Ding Y, Zhang M, Lydy MJ (2013) Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90:958–964CrossRefGoogle Scholar
  47. Wheelock CE, Eder KJ, Werner I, Huanga H, Jones PD, Brammell BJ, Elskus AA, Hammock BD (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192CrossRefGoogle Scholar
  48. Yang Y, Ma M, Zhou J, Liu J, Liu W (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154CrossRefGoogle Scholar
  49. You J, Brennan A, Lydy MJ (2009) Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere 75:1477–1482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Rosa
    • 1
  • M. D. Bordalo
    • 1
  • A. M. V. M. Soares
    • 1
  • J. L. T. Pestana
    • 1
  1. 1.Departamento de Biologia, CESAMUniversidade de AveiroAveiroPortugal

Personalised recommendations