Mercury Concentrations in Pacific Angel Sharks (Squatina californica) and Prey Fishes from Southern Gulf of California, Mexico

  • O. Escobar-Sánchez
  • J. Ruelas-Inzunza
  • X. G. Moreno-Sánchez
  • A. K. Romo-Piñera
  • M. G. Frías-Espericueta
Article

Abstract

Concentrations of mercury (Hg) were quantified in muscle tissues of the Pacific angel shark, Squatina californica sampled from Southern Gulf of California, Mexico, considering total length, sex, diet and the dietary risk assessment. High Hg levels are typically associated with carnivorous fishes, however S. californica showed low Hg concentrations (<1.0 µg g−1) in muscle (0.24 ± 0.27 µg g−1 wet weight; n = 94). No effect of sex, total length and weight on Hg concentrations were observed in the shark (p > 0.05). Hg concentrations were highest in the darkedge mishipman: Porichthys analis (0.14 ± 0.08 µg g−1) and red-eye round herring Etrumeus teres (0.13 ± 0.05 µg g−1) relative to other prey species, which could suggest that Hg concentrations in S. californica were influenced by these species. Given the relatively low concentration of Hg across age-classes and sex, consumption of S. californica’s muscle tissue poses limited risk to humans.

Keywords

Trace element Biomagnification Elasmobranch Squatinidae Porichthys analis 

References

  1. Adams DH, McMichael RH, Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. 2nd edition revised. St. Petersburg, FL, Florida Marine Research Institute, (Florida Marine Research Institute. Technical Report, TR-9). http://aquaticcommons.org/120/1/TR9.pdf
  2. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general view. Chemosphere 40:1335–1351. doi:10.1016/S0045-6535(99)00283-0 CrossRefGoogle Scholar
  3. Bonfil R (1994) Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper No. 341. RomeGoogle Scholar
  4. CONAPESCA (2013) Anuario Estadístico de Acuacultura y Pesca. Secretaría de Agricultura, Ganadería y Desarrollo Rural, Pesca y Alimentación. Comisión Nacional de Pesca. Mazatlán. http://www.conapesca.sagarpa.gob.mx/wb/cona/cona_anuario_estadistico_de_pesca
  5. De Pinho AP, Guimarães JRD, Martins AS, Costa PAS, Olavo G, Valentin J (2002) Total mercury in muscle tissue of five shark species from Brazilian offshore waters: effects of feeding habit, sex, and length. Environ Res 89(3):250–258. doi:10.1006/enrs.2002.4365 CrossRefGoogle Scholar
  6. Escobar-Sánchez O, Abitia-Cárdenas LA, Galván-Magaña F (2006) Food habits of the Pacific angel shark Squatina californica in the southern Gulf of California. Cybium 30(4):91–97Google Scholar
  7. Escobar-Sánchez O, Galván-Magaña F, Abitia-Cárdenas LA (2011) Trophic level and isotopic composition of δ13C and δ15N of Squatina californica in the southern Gulf of California, Mexico. J Fish Aquat Sci 6(2):141–150. doi:10.3923/jfas.2011.141.150 CrossRefGoogle Scholar
  8. Escobar-Sánchez O, Ruelas-Inzunza J, Patrón-Gómez JC, Corro-Espinosa D (2014) Mercury levels in myliobatid stingrays (Batoidea) from the Gulf of California: tissue distribution and health risk assessment. Environ Monit Assess 186(3):1931–1937. doi:10.1007/s10661-013-3506-7 CrossRefGoogle Scholar
  9. Galvan-Magaña F, Nienhuis HJ, Klimley AP (1989) Seasonal abundance and feeding habits of sharks of the lower Golf of California, México. Calif Fish Game 75(2):74–84Google Scholar
  10. Houserova P, Kuban V, Spurny P, Habarta P (2006) Determination of total mercury and mercury species in fish and aquatic ecosystems of Moravian rivers. Vet Med-US 51(3):101–110Google Scholar
  11. JECFA (Joint FAO/WHO Expert Committee on Food Additives) 2010. Joint FAO/WHO Food Standards Programme, Committee of the Codex Alimentarius Commission, Thirty-third Session. http://www.fsis.usda.gov/PDF/2010-CAC/cac33_15e.pdf. Accessed 20 July 2010
  12. Le Bourg B, Kiszka J, Bustamante P (2014) Mother-embryo isotope (δ15N, δ13C) fractionation and mercury (Hg) transfer in aplacental deep-sea sharks. J Fish Biol 84:1574–1581. doi:10.1111/jfb.12357 CrossRefGoogle Scholar
  13. Lyons K, Carlisle A, Preti A, Mull C, Blasius M, O’Sullivan J, Winkler C, Lowe CG (2013) Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks. Mar Environ Res 90:27–38. doi:10.1016/j.marenvres.2013.05.009 CrossRefGoogle Scholar
  14. Magalhães MC, Costa V, Menezes GM, Pinho MR, Santos RS, Monteiro LR (2007) Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores. Mar Pollut Bull 54:1654–1662. doi:10.1016/j.marpolbul.2007.07.006 CrossRefGoogle Scholar
  15. Maz-Courrau A, López-Vera C, Galván-Magaña F, Escobar-Sánchez O, Rosiles-Martínez R, Sanjuán-Muñoz A (2012) Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California peninsula, Mexico. Bull Environ Contam Toxicol 88(2):129–134. doi:10.1007/s00128-011-0499-1 CrossRefGoogle Scholar
  16. Moody JR, Lindstrom PM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267. doi:10.1021/ac50022a039 CrossRefGoogle Scholar
  17. Moore CJ (2000) A review of mercury in the environment (its occurrence in marine fish). Office of Environmental Management. Marine Resources Division, South Carolina Department of Natural Resources. http://www.dnr.sc.gov/marine/img/mm_paper.pdf
  18. Murphy GW (2004) Uptake of mercury and relationship to food habits of selected fish species in the Shenandoah river basin, Virginia. Dissertation, Virginia Polytechnic InstituteGoogle Scholar
  19. Newman MC, Unger MA (2002) Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, FLGoogle Scholar
  20. NOM-027-SSA1-1993. Norma Oficial Mexicana (1993) Bienes y Servicios. Productos de la pesca. Pescados frescos-refrigerados y congelados. Especificaciones sanitarias. Published: June 17 1994Google Scholar
  21. Pethybridge H, Cossa D, Butler ECV (2010) Mercury in 16 demersal sharks from southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69:18–26. doi:10.1016/j.marenvres.2009.07.006 CrossRefGoogle Scholar
  22. Romero-Caicedo A (2013). Biología reproductiva del tiburón angelito (Ayres, 1859) en el suroeste del Golfo de California. Dissertation. IPN-CICIMARGoogle Scholar
  23. Rose DA (1996) Shark fisheries and trade in the Americas, vol 1. North America. TRAFFIC, CambridgeGoogle Scholar
  24. Ruelas-Inzunza J, Páez-Osuna F, Ruíz-Fernández C, Zamora-Arellano N (2011) Health risk associated to dietary intake of mercury in selected coastal areas of Mexico. Bull Environ Contam Toxicol 86:180–188. doi:10.1007/s00128-011-0189-z CrossRefGoogle Scholar
  25. Ruelas-Inzunza J, Escobar-Sánchez O, Patrón-Gómez JC, Moreno-Sánchez XG, Murillo-Olmeda A, Spanopoulos-Hernández M, Corro-Espinosa D (2013) Mercury levels in muscle and liver of selected ray species from Northwest Mexico. Mar Pollut Bull 77:434–436. doi:10.1016/j.marpolbul.2013.09.010 CrossRefGoogle Scholar
  26. Storelli MM, Busco P, Marcotrigiano GO (2005) Mercury and arsenic speciation in the muscle tissue of Scyliorhinus canicula from the Mediterranean Sea. Bull Environ Contam Toxicol 75:81–88. doi:10.1007/s00128-005-0721-0 CrossRefGoogle Scholar
  27. Villavicencio-Garayzar CJ (1996) Aspectos poblacionales del angelito, Squatina californica, AYRES, en Baja California, México. Rev Inv Cient Ser Cienc Mar 1:15–21Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. Escobar-Sánchez
    • 1
  • J. Ruelas-Inzunza
    • 2
  • X. G. Moreno-Sánchez
    • 3
  • A. K. Romo-Piñera
    • 4
  • M. G. Frías-Espericueta
    • 1
  1. 1.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  2. 2.Instituto Tecnológico de MazatlánMazatlánMexico
  3. 3.Instituto Politécnico Nacional (CICIMAR-IPN)La PazMexico
  4. 4.Universidad Autónoma de Baja California SurLa PazMexico

Personalised recommendations