Skip to main content
Log in

Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Three soil types – neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p < 0.001) microbial activities in the soils. The critical mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway BJ (1995) Heavy metals in soils. Springer Science, New York

    Book  Google Scholar 

  • Ardestani MM, van Straalen NM, van Gestel CA (2014) The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review. Environ Pollut 195:133–147

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chem Acta 479:233–248

    Article  CAS  Google Scholar 

  • Broos K, Mertens J, Smolders E (2005) Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study. Environ Toxicol Chem 24:634–640

    Article  CAS  Google Scholar 

  • Busto Y, Tack F, Cabrera X (2012) Mercury mobility and availability in highly contaminated solid wastes from a chlor-alkali plant. Int J Environ Sustain Dev 11:3–18

    Article  Google Scholar 

  • Casida L (1977) Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl Environ Microbiol 34:630–636

    CAS  Google Scholar 

  • Casucci C, Okeke BC, Frankenberger WT (2003) Effects of mercury on microbial biomass and enzyme activities in soil. Biol Trace Elem Res 94:179–191

    Article  CAS  Google Scholar 

  • CCME (1997) Recommended Canadian soil quality guidelines. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/index.html

  • Elinder C, Rose B (2011, September 21) Epidemiology and toxicity of mercury. www.uptodate.com

  • Frey B, Rieder SR (2013) Response of forest soil bacterial communities to mercury chloride application. Soil Biol Biochem 65:329–337

    Article  CAS  Google Scholar 

  • Gardner WH, Klute A (1986) Water content. In: Methods of soil analysis. Part 1. Physical and mineralogical methods, vol 86, pp 493–544

  • Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci 108:1479–1483

    Article  Google Scholar 

  • Innanen S (1998) The ratio of anthropogenic to natural mercury release in Ontario: three emission scenarios. Sci Total Environ 213:25–32

    Article  CAS  Google Scholar 

  • Kader M, Lamb D, Correll R, Megharaj M, Naidu R (2015) Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicology and environmental safety 122:EES15753–EES15753

    Article  CAS  Google Scholar 

  • Krabbenhoft DP, Sunderland EM (2013) Global change and mercury. Science 341:1457–1458

    Article  CAS  Google Scholar 

  • Kumar S, Chaudhuri S, Maiti S (2013) Soil dehydrogenase enzyme activity in natural and mine soil-A review middle-east. J Sci Res 13:898–906

    CAS  Google Scholar 

  • Lessard I, Renella G, Sauvé S, Deschênes L (2013) Metal toxicity assessment in soils using enzymatic activity: can water be used as a surrogate buffer? Soil Biol Biochem 57:256–263

    Article  CAS  Google Scholar 

  • Liang C, Tabatabai M (1977) Effects of trace elements on nitrogen mineralisation in soils. Environ Pollut (1970) 12:141–147

    Article  Google Scholar 

  • Liu Y-R, Zheng Y-M, Shen J-P, Zhang L-M, He J-Z (2010) Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ Sci Pollut Res 17:1237–1244

    Article  CAS  Google Scholar 

  • Liu Y-R, Wang J-J, Zheng Y-M, Zhang L-M, He J-Z (2014) Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol 68:575–583

    Article  CAS  Google Scholar 

  • Matilainen T, Verta M, Korhonen H, Uusi-Rauva A, Niemi M (2001) Behavior of mercury in soil profiles: impact of increased precipitation, acidity, and fertilization on mercury methylation. Water Air Soil Pollut 125:105–120

    Article  CAS  Google Scholar 

  • Miller W, Miller D (1987) A micro-pipette method for soil mechanical analysis. Commun Soil Sci Plant Anal 18:1–15

    Article  CAS  Google Scholar 

  • Nasreen C, Mohiddin GJ, Srinivasulu M, Manjunatha B, Rangaswamy V (2015) Interaction effects of insecticides on microbial populations and dehydrogenase activity in groundnut (Arachis hypogeae l.) planted black clay soil. Int J Curr Microbiol Appl Sci 4:135–146

    Google Scholar 

  • Neculita C-M, Zagury GJ, Deschênes L (2005) Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual 34:255–262

    CAS  Google Scholar 

  • Nelson PF et al (2012) Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmos Environ 62:291–302

    Article  CAS  Google Scholar 

  • NEPM (2013) National environmental protection measure 1999. Schedule B1: Guideline on investigation levels for soil and groundwater. http://www.comlaw.gov.au/Details/F2013C00288/Html/Volume_2

  • Norton JM, Stark JM (2011) Regulation and measurement of nitrification in terrestrial systems. Methods Enzymol 486:343–368

    Article  CAS  Google Scholar 

  • Nriagu JO (1979) The biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161

    Article  CAS  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic press, Amsterdam

    Google Scholar 

  • Quilchano C, Marañón T (2002) Dehydrogenase activity in Mediterranean forest soils. Biol Fertil Soils 35:102–107

    Article  CAS  Google Scholar 

  • Randall P, Hedrick E, Grimmet P, Engle M, Ilyushchenko M (2004) Observations and analysis of mercury in the topsoil within a 100-m radius of a chlor-alkali plant in northern Kazakhstan using EPA method 7473. Mater Geoenviron 51:207–211

    CAS  Google Scholar 

  • Reis AT, Lopes CB, Davidson CM, Duarte AC, Pereira E (2014) Extraction of mercury water-soluble fraction from soils: an optimization study. Geoderma 213:255–260

    Article  CAS  Google Scholar 

  • Sauvé S, Dumestre A, McBride M, Gillett JW, Berthelin J, Hendershot W (1999) Nitrification potential in field-collected soils contaminated with Pb or Cu. Appl Soil Ecol 12:29–39

    Article  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822. doi:10.1016/S1352-2310(97)00293-8

    Article  CAS  Google Scholar 

  • Skyllberg U (2012) Chemical speciation of mercury in soil and sediment. In: Environmental chemistry and toxicology of mercury, pp 219–258

  • Skyllberg U, Bloom PR, Qian J, Lin C-M, Bleam WF (2006) Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180

    Article  CAS  Google Scholar 

  • Tardy V et al (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183

    Article  CAS  Google Scholar 

  • Tazisong IA, Senwo ZN, Williams MI (2012) Mercury speciation and effects on soil microbial activities. J Environ Sci Health Part A 47:854–862

    Article  CAS  Google Scholar 

  • Wagner-Döbler I (2013) Bioremediation of mercury: current research and industrial applications. Horizon Scientific Press, Norfolk

    Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131:323–336. doi:10.1016/j.envpol.2004.01.010

    Article  CAS  Google Scholar 

  • Warne MSJ et al (2014) Revisions to the derivation of the Australian and New Zealand guidelines for toxicants in fresh and marine waters. Environ Sci Pollut Res 21:51–60

    Article  Google Scholar 

  • Yuan Q, Guoqing Z, Wenxiang H (2012) Effects of Hg on soil enzyme. J Northwest Agric For Univ. http://agris.fao.org/agris-search/search.do?recordID=CN2013000169

  • Zhang L, Wong M (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE) for funding the project in collaboration with Centre for Environmental Risk Assessment and Remediation, University of South Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khandaker Rayhan Mahbub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahbub, K.R., Krishnan, K., Megharaj, M. et al. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value. Bull Environ Contam Toxicol 96, 76–82 (2016). https://doi.org/10.1007/s00128-015-1664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1664-8

Keywords

Navigation