Skip to main content

Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida

Abstract

Acute toxicity, bioaccumulation, and elimination of herbicide clomazone in the earthworm Eisenia fetida were investigated in the different exposure systems. The LC50 values of clomazone on earthworms were 5.6 μg cm−2 in the contact filter paper test (48 h), 174.9 mg kg−1 (7 days) and 123.4 mg kg−1 (14 days) in artificial soil test, respectively. Clomazone could rapidly bioaccumulate in earthworms and reached the highest concentration after 3 days exposure, with the maximum concentrations of 9.0, 35.3 and 142.3 mg kg−1 at 10.0, 40.0 and 160.0 mg kg−1 of clomazone, respectively. Clomazone uptake showed a good correlation with exposure concentration. After the 14th day, clomazone declined to minimum value. About 74 %–80 % of accumulated clomazone was eliminated within 1 day after exposed to clomazone-free soil. However, a trace amount of clomazone persisted for a relatively long time in earthworms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cao J, Diao X, Hu J (2013a) Hydrolysis and photolysis of herbicide clomazone in aqueous solutions and natural water under abiotic conditions. J Integr Agric 12:2074–2082

    Article  Google Scholar 

  2. Cao J, Diao XP, Hu JY, Xie J, Du JQ, Zhao CF (2013b) Effects of clomazone on antioxidative enzymes activity and DNA damage of earthworm. J Agro Environ Sci 32:925–931

    CAS  Google Scholar 

  3. Clasen B, Loro VL, Cattaneo R, Lópes T, de Avila LA, Baldisserotto B (2012) Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: implications for rice-fish cultivation. Ecotoxicol Environ Saf 77:45–51

    CAS  Article  Google Scholar 

  4. Hu JY, Cao D, Deng ZB (2011) Determination of clomazone residues in soybean and soil by high performance liquid chromatography with DAD detection. Bull Environ Contam Toxicol 86:444–448

    CAS  Article  Google Scholar 

  5. Kelsey JW, Peters R, Slizovskiy IB (2008) Effects of incubation time and organism density on the bioaccumulation of soil-borne p, p′-DDE by the earthworm, Eisenia fetida. Bull Environ Contam Toxicol 81:266–269

    CAS  Article  Google Scholar 

  6. Kennedy DG, Cannavan A, Hewitt SA, Rice DA, Blanchflower WJ (1993) Determination of ivermectin residues in the tissues of Atlantic salmon (Salmo salar) using HPLC with fluorescence detection. Food Add Contam 10:579–584

    CAS  Article  Google Scholar 

  7. Landrum M, Cañas JE, Coimbatore G, Cobb GP, Jackson WA, Zhang B, Anderson TA (2006) Effects of perchlorate on earthworm (Eisenia fetida) survival and reproductive success. Sci Total Environ 363:237–244

    CAS  Article  Google Scholar 

  8. Lazartigues A, Thomas M, Banas D, Brun-Bellut J, Cren-Olivé C, Feidt C (2013) Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere 91:530–535

    CAS  Article  Google Scholar 

  9. Li AF, Li GX, Yang RB, Guo ZY, Liao XY, Yang R (2004) Clomazone dissipation, adsorption and translocation in four paddy topsoils. J Environ Sci 16:678–682

    CAS  Google Scholar 

  10. Menezes C, Leitemperger J, Murussi C, Toni C, Araújo MDCS, Farias IL, Loro VL (2014) Herbicide clomazone effects on δ-Aminolevulinic acid activity and metabolic parameters in cyprinus carpio. Bull Environ Contam Toxicol 92:393–398

    CAS  Article  Google Scholar 

  11. Mervosh TL, Sims GK, Stoller EW (1995) Clomazone fate in soil as affected by microbial activity, temperature, and soil moisture. J Agric Food Chem 43:537–543

    CAS  Article  Google Scholar 

  12. Mills JA, Witt WW, Barrett M (1989) Effects of tillage on the efficacy and persistence of clomazone in soybean (Glycine max). Weed Sci 37:217–222

    CAS  Google Scholar 

  13. OECD. Guideline for testing of chemicals No. 207 (1984) Earthworm, acute toxicity tests. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  14. Olvera-Velona A, Capowiez Y, Mascle O, Ortiz-Hernandez L, Benoit P (2008) Assessment of the toxicity of ethyl-parathion to earthworms (Aporrectodea caliginosa) using behavioural, physiological and biochemical markers. Appl Soil Ecol 40:476–483

    Article  Google Scholar 

  15. Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155

    Article  Google Scholar 

  16. Quayle WC, Oliver DP, Zrna S (2006) Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture. J Agric Food Chem 54:7213–7220

    CAS  Article  Google Scholar 

  17. Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25

    Article  Google Scholar 

  18. Shan J, Wang Y, Wang L, Yan X, Ji R (2014) Effects of the geophagous earthworm Metaphire guillelmi on sorption, mineralization, and bound-residue formation of 4-nonylphenol in an agricultural soil. Environ Pollut 189:202–207

    CAS  Article  Google Scholar 

  19. Shi YJ, Lv YL, Wang X, Zhang X (2009) Effects of lindane and carbofuran on mortality, growth, and reproduction of earthworms (Eisenia foetida). Asian J Ecotoxicol 4:101–107

    CAS  Google Scholar 

  20. Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworms (Eisenia fetida). Chemosphere 60:699–704

    CAS  Article  Google Scholar 

  21. TenBrook PL, Tjeerdema RS (2006) Biotransformation of clomazone in rice (Oryza sativa) and early watergrass (Echinochloa oryzoides). Pestic Biochem Phys 85:38–45

    CAS  Article  Google Scholar 

  22. Xu P, Diao J, Liu D, Zhou Z (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079

    CAS  Article  Google Scholar 

  23. Zhang B, Pan X, Cobb GP, Anderson TA (2009) Uptake, bioaccumulation, and biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida). Chemosphere 76:76–82

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Pesticide Residue Research Program (No. FRF-SD-12-010B) from the Ministry of Agriculture, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Diao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Li, P., Li, Q.X. et al. Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida . Bull Environ Contam Toxicol 95, 606–610 (2015). https://doi.org/10.1007/s00128-015-1649-7

Download citation

Keywords

  • Clomazone
  • Earthworm
  • Pesticide residue
  • Acute toxicity