Skip to main content

Comparing the Toxicity of Water-Soluble Fractions of Biodiesel, Diesel and 5 % Biodiesel/Diesel Blend on Oreochromis niloticus Using Histological Biomarkers

Abstract

This study estimated end compared the potential toxic effects of the water-soluble fractions (WSF) of biodiesel (B100), diesel and the commercial biodiesel (B5) on Oreochromis niloticus. After a 24 h-exposition to WSF-0 % (control) and WSF-serial concentrations of 4.6 %, 10 %, 22 %, 46 % and 100 %, samples of gill and liver of the exposed fishes were fixed in Bouin’s solution, processed, stained using hematoxylin/eosin and analyzed by light-microscopy. WSF-hydrocarbons and methanol contents, analyzed by gas chromatography, were checked against the occurrence of abnormal histopathological alterations. These were not found in the control and WSF-4.6 % exposed fishes, while exposures to or above 10 %-WSF resulted in histopathological alterations whose severity increased in a dose-dependent manner, being higher in fishes exposed to WSF-diesel, or WSF–B5 when compared to biodiesel. These results, which were corroborated by the chemical analyses, highlighted the histological technique as an appropriate diagnostic tool that can be used for the preservation of water bodies’ quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson JW, Neff JM, Cox BA (1974) Characteristics of dispersions and water soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Mar Biol 27:75–88

    CAS  Article  Google Scholar 

  2. AVMA-American Medical Veterinary Association (2007). Guidelines on Euthanasia. Available via DIALOG: http://www.avma.org/issues/animal-welfare/euthanasia.pdf

  3. Cengiz E, Unlu E (2006) Sublethal effects of commercial deltamethrin on thestructure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: a microscopic study. Environ Toxicol Pharmacol 21:246–253

    CAS  Article  Google Scholar 

  4. Cruz ACS, Leite MBNL, Rodrigues LEA, Nascimento IA (2012) Estimation of biodiesel cytotoxicity by using acid phosphatase as a biomarker of lysosomal integrity. Bull Environ Contamin Toxicol 90:32–49

    Google Scholar 

  5. Hilton DE (1990) Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. In: McCarthy J, Shugart LR (eds) Biological markers of environmental contamination. CRC Press Inc, Boca Raton, pp 17–58

    Google Scholar 

  6. Khan RA (1998) Influence of petroleum at a refinery terminal on winter flounder, Pleuronectes americanus. Bull Environ Contamin Toxicol 61:770–777

    CAS  Article  Google Scholar 

  7. Khan N, Warith AM, Luk GA (2007) Comparison of acute toxicity of biodiesel, biodiesel blends, and diesel on aquatic organisms. J Air Waste Manag Assoc 57:286–296

    CAS  Article  Google Scholar 

  8. Knothe G, Gerpen JV, Krahl J, Ramos LP (2006) Manual do biodiesel. São Paulo, Edgard Blücher

    Google Scholar 

  9. Leite MBNL, De Araújo MMS, Nascimento IA, Cruz ACS, Pereira SA, Nascimento NC (2011) Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil. Environ Toxicol Chem 30:893–897

    CAS  Article  Google Scholar 

  10. Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    CAS  Article  Google Scholar 

  11. Martins LK, Nascimento IA, Fillman G, King R, Depledge M, Readman J, Evangelista AJA (2005) Lysosomal responses as diagnostic tool for the detection of oil chronic pollution at Todos os Santos Bay. Environ Res 98:387–396

    Article  Google Scholar 

  12. Monteiro SME, Rocha A, Fontainhas-Fernandes Sousa M (2008) Quantitative histopathology of Oreochromis niloticus gills after copper exposure. J Fish Biol 73:1376–1392

    CAS  Article  Google Scholar 

  13. Nascimento IA, Souza ECPM, Nipper M (2002) Métodos em ecotoxicologia marinha: apliocações no Brasil. Editora Artes Gráficas e Indústria Ltda, São Paulo

    Google Scholar 

  14. Navas JM, Babín M, Casado S, Fernández C, Tarazona JV (2006) The prestige oil spill: a laboratory study about the toxicity of the water-soluble fraction of the fuel oil. Mar Environ Res 62:352–355

    Article  Google Scholar 

  15. Pal S, Kokushi E, Cheikyula JO, Koyama J, Uno S (2011) Histopathological effects and EROD induction in common carp exposed to dietary heavy oil. Ecotoxicol Environ Saf 74:307–314

    CAS  Article  Google Scholar 

  16. Pereira SA, Araújo VQ, Rebouças MV, Vieira FSV, Almeida MVA, Chinalia FA, Nascimento IA (2012) Toxicity of biodiesel, diesel and biodiesel/diesel blends: comparative sub-lethal effects of water-soluble fractions to microalgae species. Bull Environ Contam Toxicol 88:234–238

    CAS  Article  Google Scholar 

  17. Pesce SF, Cazenave J, Monferra MV, Frede S, Wunderlin DA (2008) Integrated survey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata. Environ Pollut 156:775–783

    CAS  Article  Google Scholar 

  18. Rodrigues RV, Miranda-Filho KC, Gusmão EP, Moreira CB, Romano LA, Sampaio LA (2010) Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci Total Environ 408:2054–2059

    CAS  Article  Google Scholar 

  19. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    CAS  Article  Google Scholar 

  20. Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recovery 6:75–86

    CAS  Article  Google Scholar 

  21. Sepici-Dinçel A, Cağlan Karasu Benli A, Selvi M, Sarikaya R, Sahin D, Ayhan Ozkul I, Erkoç F (2009) Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 72:1433–1439

    Article  Google Scholar 

  22. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998). An overview of biodiesel and petroleum diesel life-cycles. Report of National Renewable Energy Laboratory (NREL) and US Department of Energy (DOE. Task No BF886002)

  23. Simonato JD, Guedes CLB, Martinez CBR (2008) Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Environ Saf 69:112–120

    CAS  Article  Google Scholar 

  24. Wang WG, Lyons DW, Clark NN, Gautam M (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34:933–939

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Council for Scientific and Technological Development (CNPQ)/Science and Technology Ministry, Brazil (Processes 574712/2008-9 and 551134/2010-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Luís da Cruz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leite, M.B.N.L., da Cruz, A.L., Rodrigues, L.E.A. et al. Comparing the Toxicity of Water-Soluble Fractions of Biodiesel, Diesel and 5 % Biodiesel/Diesel Blend on Oreochromis niloticus Using Histological Biomarkers. Bull Environ Contam Toxicol 95, 574–581 (2015). https://doi.org/10.1007/s00128-015-1645-y

Download citation

Keywords

  • Biodiesel
  • Commercial B5
  • Diesel
  • Histopathology
  • Oreochromis niloticus