Skip to main content
Log in

Increase in Developmental Instability in a Field-Collected Chironomus Population Maintained Under Laboratory Conditions

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In order to be a relevant indicator of exposure towards teratogenic stressors, morphological defects should not be passed on to the next generation. In this study, we compare morphological variations in Chironomids collected from a contaminated river stretch with those of their progeny, reared in uncontaminated sediment under laboratory conditions. We focused on mentum defects (deformities, fluctuating asymmetry and mean shape change), measured by geometric morphometrics. We observed no significant variation in deformity rate between the parental generation and its progeny. On the contrary, we observed a significant increase in fluctuating asymmetry and a significant decrease in mentum centroid size in the offspring. Our results suggest that shape defects are not caused by direct exposure to teratogenic stressors alone. We propose four hypotheses to explain this: (a) teratogenic contaminants are present in egg-clutches, (b) contaminants at the sampling site have mutagenic effects, (c) costs of tolerance, and (d) contamination-induced genetic impoverishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agra AR, Soares AMVM, Barata C (2011) Life-history consequences of adptation to pollution. “Daphnia longispina clones historically exposed to copper”. Ecotoxicology 20:552–562

    Article  CAS  Google Scholar 

  • Alibert P, Auffray JC (2003) Genomic coadaptation, outbreeding depression, and developmental instability. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 116–134

    Google Scholar 

  • Allen D, Leamy L (2001) 2,3,7,8-Tetrachlorodibenzo-p-dioxin affects size and shape, but not asymmetry, of mandibles in mice. Ecotoxicology 10:167–176

    Article  CAS  Google Scholar 

  • Arambourou H, Beisel JN, Branchu P, Debat V (2012) Patterns of fluctuating asymmetry and shape variation in Chironomus riparius (Diptera, Chironomidae) exposed to nonylphenol or lead. PLoS One 7:e48844

    Article  CAS  Google Scholar 

  • Arambourou H, Beisel JN, Branchu P, Debat V (2014) Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius. Sci Total Environ 484:92–101

    Article  CAS  Google Scholar 

  • Arimoro FO, Ikomi RB, Iwegbue CMA (2007) Water quality changes in relation to Diptera community patterns and diversity measured at an organic effluent impacted stream in the Niger Delta, Nigeria. Ecol Indic 7:541–552

    Article  CAS  Google Scholar 

  • Bird GA (1994) Use of chironomid deformities to assess environmental degradation in the Yamaska River, Quebec. Environ Monit Assess 30:164–175

    Article  Google Scholar 

  • Bird GA (1995) The effect of 210Pb and stable lead on the induction of menta deformities in Chironomus tentans larvae and on their growth and survival. Environ Toxicol Chem 14:2125–2130

    Article  CAS  Google Scholar 

  • Bleeker EA, Leslie HA, Groenendijk D et al (1999) Effect of exposure to azaarenes on emergence and mouthpart development in the midge Chironomus riparius (Diptera: Chironomidae). Environ Toxicol Chem 18:1829–1834

    Article  CAS  Google Scholar 

  • Boerger HJ, Clifford HF, Davies RW (1982) Density and microdistribution of chironomid larvae in an Alberta brown-water stream. Revue Canadienne de Zoologie 60:913–920

    Article  Google Scholar 

  • Bonada N, Williams DD (2002) Exploration of the utility of fluctuating asymmetry as an indicator of river condition using larvae of the caddisfly Hydropsyche morosa (Trichoptera: Hydropsychidae). Hydrobiologia 481:147–156

    Article  Google Scholar 

  • Bookstein F (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen G, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res Rev Mutat Res 567:151–225

    Article  CAS  Google Scholar 

  • Clarke GM (1993) Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environ Pollut 82:207–211

    Article  CAS  Google Scholar 

  • Coustau C, Chevillon C, Ffrench-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383

    Article  Google Scholar 

  • Coutellec MA, Barata C (2013) Special issue on long-term ecotoxicological effects: an introduction. Ecotoxicology 22:763–766

    Article  CAS  Google Scholar 

  • Dickman M, Brindle I, Benson M (1992) Evidence of teratogens in sediments of the Niagara river watershed as reflected by Chironomid (Dipera: Chironomidae) deformities. J Great Lakes Res 18:467–480

    Article  CAS  Google Scholar 

  • Drover S, Leung B, Forbes MR et al (1999) Lake pH and aluminium concentration: consequences for developmental stability of water strider Rheumatobates rileyi (Hemiptera: Gerridae). Can J Zool 77:157–161

    Article  CAS  Google Scholar 

  • Epler J (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources. St. Johns River Water Management District, Raleigh

    Google Scholar 

  • Franz ED, Wiramanaden CI, Janz DM, Pickering IJ, Liber K (2011) Selenium bioaccumulation and speciation in Chironomus dilutus exposed to water-borne selenate, selenite, or seleno-DL-methionine. Environ Toxicol Chem 30:2292–2299

    Article  CAS  Google Scholar 

  • Gower AM, Buckland PJ (1978) Water quality and the occurrence of Chironomus riparius Meigen (Diptera: Chironomidae) in a stream receiving sewage effluent. Freshw Biol 8:153–164

    Article  CAS  Google Scholar 

  • Graham J, Emlen J, Freeman D (1993) Developmental stability and its applications in ecotoxicology. Ecotoxicology 2:175–184

    Article  CAS  Google Scholar 

  • Groenendijk D, Zeinstra L, Postma J (1998) Fluctuating asymmetry and mentum gaps in populations of midge Chironomus riparius (Diptera: Chironomidae) from a metal contaminated river. Environ Toxicol Chem 17:1999–2005

    Article  CAS  Google Scholar 

  • Hoffmann A, Woods R, Collins E et al (2005) Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Aust J Entomol 44:233–243

    Article  Google Scholar 

  • Hwang H, Fisher SW, Landrum PF (2001) Identifying body residues of HCBP associated with 10-d mortality and partial life cycle effects in the midge, Chironomus riparius. Aquat Toxicol 52:251–267

    Article  CAS  Google Scholar 

  • Janssens de Bisthoven L, Postma J, Parren P et al (1998a) Relations between heavy metals in aquatic sediments and in Chironomus larvae of Belgian lowland rivers and their morphological deformities. J Can Sci Halieut Aquat 55:688–703

    Article  Google Scholar 

  • Janssens de Bisthoven L, Vermeulen A, Ollevier F (1998b) Experimental induction of morphological deformities in Chironomus riparius larvae by chronic exposure to copper and lead. Arch Environ Contam Toxicol 35:249–256

    Article  CAS  Google Scholar 

  • Jeyasingham K, Ling N (1997) Head capsule deformities in Chironomus zealandicus (Diptera: Chironomidae): Influence of site and substrate. N Z J Mar Freshw Res 31:175–184

    Article  Google Scholar 

  • Klingenberg C (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol 11:353–357

    Article  Google Scholar 

  • Klingenberg C, McIntyre G (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375

    Article  Google Scholar 

  • Klingenberg CP, Barluenga M, Mayer A (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56:1909–1920

    Article  Google Scholar 

  • Leamy L, Klingenberg C (2005) The genetics and evolution of fluctuating asymmetry. Annu Rev Ecol Evol Syst 36:1–21

    Article  Google Scholar 

  • Lee SD, Choi J (2006) Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ Toxicol Chem 25:3006–3014

    Article  CAS  Google Scholar 

  • Leung B, Mineau P, Knopper L (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 415–426

    Google Scholar 

  • Madden CP, Suter PJ, Nicholson BC, Austin AD (1992) Deformities in chironomid larvae as indicators of pollution (pesticide) stress. Neth J Aquat Ecol 26:551–557

    Article  Google Scholar 

  • Martinez EA, Barry CM, Schaumloffel J, Dasgupta N (2001) Induction of morphological deformities in Chironomus tentans exposed to zinc and lead spiked sediment. Environ Toxicol Chem 20:2475–2481

    Article  CAS  Google Scholar 

  • Martinez EA, Moore BC, Schaumloffel J, Dasgupta N (2002) The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Arch Environ Contam Toxicol 42:286–291

    Article  CAS  Google Scholar 

  • Martinez EA, Moore B, Schaumloffel J, Dasgupta N (2003) Morphological abnormalities in Chironomus tentans exposed to cadmium—and copper-spiked sediments. Ecotoxicol Environ Saf 55:204–212

    Article  CAS  Google Scholar 

  • Martinez EA, Moore B, Schaumloffel J, Dasgupta N (2004) Teratogenic versus mutagenic abnormalities in Chironomid larvae exposed to zinc and lead. Arch Environ Contam Toxicol 47:193–198

    Article  CAS  Google Scholar 

  • Michailova P, Petrova N, Sella G, Bovero B, Ramella L, Regoli F, Zelano V (2001) Genotoxic effects of chromium on polytene chromosomes of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Caryologia 54:59–71

    Article  Google Scholar 

  • Michailova P, Petrova N, Ilkova J, Bovero S, Brunetti S, White K, Sella G (2006) Genotoxic effect of copper on salivary gland polytene chromosomes of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Environ Pollut 144:647–654

    Article  CAS  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Mogren CL, von Kiparski GR, Guntram R, Parker DR, Trumble JT (2012) Survival, reproduction, and arsenic body burdens in Chironomus riparius exposed to arsenate and phosphate. Sci Total Environ 425:60–65

    Article  CAS  Google Scholar 

  • Mogren CL, Webb SM, Walton WE, Trumble JT (2013) Micro X-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae). Environ Pollut 180:78–83

    Article  CAS  Google Scholar 

  • Nowak C, Jost D, Vogt C, Oetken M, Schwenk K, Oehlmann J (2007a) Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius. Aquat Toxicol 85:278–284

    Article  CAS  Google Scholar 

  • Nowak C, Vogt C, Diogo B, Schwenk K (2007b) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022

    Article  CAS  Google Scholar 

  • Nowak C, Vogt C, Pfenninger M, Schwenk K, Oehlmann J, Streit B, Oetken M (2009) Rapid genetic erosion in pollutant-exposed experimental chironomid populations. Environ Pollut 157:881–886

    Article  CAS  Google Scholar 

  • OECD (2004) Test No. 218: Sediment-water chironomid toxicity using spiked sediment, OECD guidelines for the testing of chemicals, section 2. OECD publishing, Paris

    Google Scholar 

  • Oliveira EE, Guedes RNC, Totóla MR, De Marco P Jr (2007) Competition between insecticide-susceptible and -resistant populations of the maize weevil, Sitophilus zeamais. Chemosphere 69:17–24

    Article  CAS  Google Scholar 

  • Palmer A, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 279–319

    Google Scholar 

  • Pelabon C, Hanssen T (2008) On the adaptative accuracy of directional asymmetry in insect wing size. Evolution 62:2855–2867

    Article  Google Scholar 

  • Posthuma L, Van Straalen NM (1993) Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 106:11–38

    Google Scholar 

  • Postma JF, van Kleunen A, Admiraal W (1995a) Alterations in life-history traits of Chironomus riparius (Diptera) obtained from metal contaminated rivers. Arch Environ Contam Toxicol 29:469–475

    Article  CAS  Google Scholar 

  • Postma JF, Kyed M, Admiraal W (1995b) Site specific differenciation in metal tolerance in the midge Chironomus riparius (Diptera, Chironomidae). Hydrobiologia 315:159–165

    Article  CAS  Google Scholar 

  • Reynolds SK, Ferrington LC (2001) Temporal and taxonomic patterns of mouthpart deformities in larval midges (Diptera: Chironomidae) in relation to sediment chemistry. J Freshw Ecol 16:14–28

    Article  Google Scholar 

  • Rohlf F (2010) TPS DIG, SUNY Stony Brook. http://life.bio.sunysb.edu/morph. Accessed 9 Sept 2010

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org. Accessed 30 May 2012

  • Servia M, Cobo F, González M (2000) Incidence and causes of deformities in recently hatched larvae of Chironomus riparius MEIGEN, 1804 (Diptera, Chironomidae). Arch Hydrobiol 149:387–401

    Google Scholar 

  • Servia MJ, Cobo F, González MA (2004) Multiple-trait analysis of fluctuating asymmetry levels in anthropogenically and naturally stressed sites: a case study using Chironomus Riparius Meigen, 1804 larvae. Environ Monit Assess 90:101–112

    Article  CAS  Google Scholar 

  • Sharley DJ, Pettigrove V, Parsons YM (2004) Molecular identification of Chironomus spp (Diptera) for biomonitoring of aquatic ecosystems. Aust J Entomol 43:359–365

    Article  Google Scholar 

  • Sibly RM, Calow P (1989) A life-cycle theory of responses to stress. Biol J Linn Soc 37:101–116

    Article  Google Scholar 

  • van Valen L (1962) A study of fluctuating asymmetry. Evolution 16:125–142

    Article  Google Scholar 

  • Vogt C, Langer-Jaesrich M, Elsässer O, Schmitt C, Van Dongen S, Köhler HR, Oehlmann J, Nowak C (2013) Effects of inbreeding on mouthpart deformities of Chironomus riparius under sublethal pesticide exposure. Environ Toxicol Chem 32:423–425

    Article  CAS  Google Scholar 

  • Warwick WF (1990) Morphological deformities in Chironomidae (Diptera) larvae from the lac St. Louis and Laprairie bassins of the St. Lawrence river. J Great Lakes Res 16:185–208

    Article  Google Scholar 

  • Wene G (1940) The soil as an ecological factor in the abundance of aquatic chironomid larvae. Ohio J Sci 40:193–199

    Google Scholar 

  • Wiederholm T (1984) Incidence of deformed chironomid larvae (Diptera: Chironomidae) in Swedish lakes. Hydrobiologia 109:243–249

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study came from the French Ministry of Ecology, Sustainable Development and Energy, and from the French Institute of Science and Technology for Transport, Development and Networks. Comments by anonymous reviewers considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Arambourou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arambourou, H., Branchu, P. & Beisel, JN. Increase in Developmental Instability in a Field-Collected Chironomus Population Maintained Under Laboratory Conditions. Bull Environ Contam Toxicol 94, 681–687 (2015). https://doi.org/10.1007/s00128-015-1497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1497-5

Keywords

Navigation