Skip to main content

Advertisement

Log in

Use of Native Plants for the Remediation of Abandoned Mine Sites in Mediterranean Semiarid Environments

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Abandoned tailing dumps from mining industry represent important sources of metal contamination in the surrounding environments. This study evaluates the potential of two Mediterranean native plants, Pistacia lentiscus and Phragmites australis, for phytoremediation of two Sardinian contaminated mine sites. A 6 months study has been conducted at greenhouse-controlled conditions with the aim of investigating the plant capability to tolerate high metal concentrations and to extract or immobilize them within the roots. The possibility to mitigate stress on the plants and improve treatment efficiency by adding compost as amendment was also evaluated. Both species were able to restrict accumulation of Cd, Pb and Zn to the root tissues exhibiting a metal concentration ratio of plant roots to soil bioavailable fraction higher than two (four in the case of Zn). However, the two species showed different adaptation responses, being the survival of P. australis after 6 months in contaminated soil lower (25 %–58 %) than that observed for P. lentiscus (77 %–100 %). Compost addition resulted in a lower metal uptake in tissues of both plants and a higher survival of P. australis, whilst almost no effect was observed as regard the growth of both species. The two tested species appear to be promising candidates for phytostabilization, P. lentiscus exhibiting a greater adaptability to heavy metal contaminated matrices than P. australis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angiolini C, Bacchetta G, Brullo S, Casti M, Giusso del Galdo G, Guarino R (2005) The vegetation of the mining dumps in SW-Sardinia. Feddes Repert 116:243–276

    Article  Google Scholar 

  • Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L (2009) Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia 46 suppl 1:3–82

  • Bacchetta G, Cao A, Cappai G, Carucci A, Casti M, Fercia ML, Lonis R (2012) A field experiment on the use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. et Sm.) Greuter for the phytoremediation of abandoned mining areas. Plant Biosyst 146:1054–1063

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Barbafieri M, Lubrano L, Petruzzelli G (1996) Characterization of pollution in sites contaminated by heavy metals: a proposal. Ann Chim 86:585–594

    CAS  Google Scholar 

  • Boni M, Costabile S, De Vivo B, Gasparrini M (1999) Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). J Geochem Explor 67(1–3):417–430

    Article  CAS  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  CAS  Google Scholar 

  • Chen MH, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmites australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97(1):158–170

    Article  CAS  Google Scholar 

  • Cidu R, Biddau R, Secci G (2005) Legacy at abandoned mines: impact of mine wastes on surface waters. 9th International Mine Water Congress (IMWA 2005), Oviedo, pp 5–7

    Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Sci Total Environ 366(1):1–11

    Article  CAS  Google Scholar 

  • Domìnguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    Article  Google Scholar 

  • Domìnguez MT, Maranon T, Murillo JM, Redondo-Gómez S (2011) Response of holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere 83(8):1166–1174

    Article  Google Scholar 

  • Dybowska A, Farago M, Valsami-Jones E, Thornton I (2006) Remediation strategies for historical mining and smelting sites. Sci Prog 89(2):71–138

    Article  CAS  Google Scholar 

  • Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007) Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere 66:412–420

    Article  CAS  Google Scholar 

  • Gonzalez RC, Gonzalez-Chavez MCA (2006) Metal accumulation in wild plants surrounding mining wastes: soil and sediment remediation (SSR). Environ Pollut 144:84–92

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:9

    Google Scholar 

  • Hauser VL (2009) Evapotranspiration covers for landfills and waste sites. CRP Press, Boca Raton

    Google Scholar 

  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernández-Ondoño E (2011) Potential use in phytoremediation of three plant species growing on contaminated mine tailing soils in Sardinia. Ecol Eng 37:392–398

    Article  Google Scholar 

  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernández-Ondoño E (2014) Study of Zn, Cu and Pb content in plants and contaminated soils in Sardinia. Plant Biosyst 148:419–428

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28(1):215–225

    Article  CAS  Google Scholar 

  • Liu D, Zhou Q (2009) Effects of soil amendments on the extractability and speciation of cadmium, lead and copper in a contaminated soil. Bull Environ Contam Toxicol 83:136–140

    Article  Google Scholar 

  • Mendez M, Maier R (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  CAS  Google Scholar 

  • Mendez M, Maier R (2008b) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Carpena-Ruiz RO, Peñalosa JM (2009) Arsenic-and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotoxicol Environ Saf 72(6):1781–1789

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • RAS—Regione Autonoma della Sardegna (2003) Assessorato della Difesa dell’Ambiente Piano regionale di gestione dei rifiuti. Piano di bonifica siti inquinati. http://www.regione.sardegna.it/documenti/1_39_20051011121758.pdf

  • RAS—Regione Autonoma della Sardegna (2008) Assessorato della Difesa dell’Ambiente Piano di bonifica delle aree minerarie dismesse del Sulcis-Iglesiente-Guspinese. www.regione.sardegna.it/documenti/1_19_20080403121548.pdf

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Zeng G, Chai L, Xiao X, Song X, Min Z (2008) Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere 72(9):1260–1266

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Ye ZH, Bake AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Ann Bot 80(3):363–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Regional Sardinian Government, in the framework of “L.R. 7/2007, Promotion of scientific research and technological innovation in Sardinia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cappai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacchetta, G., Cappai, G., Carucci, A. et al. Use of Native Plants for the Remediation of Abandoned Mine Sites in Mediterranean Semiarid Environments. Bull Environ Contam Toxicol 94, 326–333 (2015). https://doi.org/10.1007/s00128-015-1467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1467-y

Keywords

Navigation