Skip to main content

Total and Monomethyl Mercury in Terrestrial Arthropods from the Central California Coast


The aim of this project was to obtain a baseline understanding and investigate the concentration of mercury (Hg) in the tissue of terrestrial arthropods. The 4-month sampling campaign took place around Monterey Bay, California. Total mercury (HgT) concentrations (x ± SD, dry weight) for the captured specimens ranged from 22 to 188 ng g−1 in the Jerusalem crickets (Orthoptera: Stenopelmatidae); 65–233 ng g−1 in the camel crickets (Orthoptera: Rhaphidophoridae); 25–227 ng g−1 in the pill bugs (Isopoda: Armadillidiidae); 19–563 ng g−1 in the ground beetles (Coleoptera: Carabidae); 140–441 ng g−1 in the variegated meadowhawk dragonflies (Odonata: Libellulidae); 607–657 ng g−1 in the pacific spiketail dragonflies (Odonata: Cordulegastridae); and 81–1,249 ng g−1 in the wolf spiders (Araneae: Lycosidae). A subset of samples analyzed for monomethyl mercury (MMHg) suggest detrital pill bugs have a higher MMHg/HgT ratio than predatory ground beetles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Agency EPA (2013) Final Mercury and Air Toxics Standards (MATS) for Power Plants vol 78

  2. Cristol DA et al (2008) The movement of aquatic mercury through terrestrial food webs science (Washington): 335 doi:10.1126/science.1154082

  3. Azevedo J, Morgan DL (1974) Fog precipitation in coastal California forests. Ecology 55:1135–1141. doi:10.2307/1940364

    Article  Google Scholar 

  4. Bloom N, Fitzgerald WF (1988) Determination of volatile mercury species at the picogram level by low-temperature gas-chromatography with cold-vapor atomic fluorescence detection. Anal Chim Acta 208:151–161. doi:10.1016/s0003-2670(00)80743-6

    CAS  Article  Google Scholar 

  5. Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141. doi:10.1007/s10646-007-0163-z

    CAS  Article  Google Scholar 

  6. Caffrey JM, Hollibaugh JT, Bano N, Haskins J (2010) Effects of upwelling on short-term variability in microbial and biogeochemical processes in estuarine sediments from Elkhorn Slough, California, USA. Aquat Microb Ecol 58:261–271. doi:10.3354/ame01387

    Article  Google Scholar 

  7. Capinera JL (2010) Insects and wildlife: arthropods and their relationships with wild vertebrate animals Insects and wildlife: arthropods and their relationships with wild vertebrate animals:i-viii, 1–487

  8. Chanthy P, Martin RJ, Gunning RV, Andrew NR (2013) Arthropod survey on soybean crops in Cambodia: a comparison of the sweep netting and beat sheeting collection methods for estimating arthropod diversity and species richness. Aust J Entomol 52:299–308. doi:10.1111/aen.12035

    Article  Google Scholar 

  9. Compeau GC, Bartha R (1985) Sulfate-reducing bacteria–principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  10. Dallinger R, Berger B, Birkel S (1992) Terrestrial isopods—useful biological indicators of urban metal pollution. Oecologia 89:32–41. doi:10.1007/bf00319012

    Article  Google Scholar 

  11. Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485. doi:10.1007/s004420050683

    Article  Google Scholar 

  12. Fitzgerald WF, Gill GA (1979) Sub-nanogram determination of mercury by 2-stage gold amalgamation and gas-phase detection applied to atmospheric analysis. Anal Chem 51:1714–1720. doi:10.1021/ac50047a030

    CAS  Article  Google Scholar 

  13. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662. doi:10.1021/cr050353m

    CAS  Article  Google Scholar 

  14. Greenslade PJM (1964) Pitfall trapping as a method for studying populations of carabidae (Coleoptera). J Anim Ecol 33:301–310. doi:10.2307/2632

    Article  Google Scholar 

  15. Hammerschmidt CR, Fitzgerald WF (2005) Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination. Environ Sci Technol 39:3034–3039. doi:10.1021/es0485107

    CAS  Article  Google Scholar 

  16. Henderson BL, Chumchal MM, Drenner RW, Deng Y, Diaz P, Nowlin WH (2012) Effects of fish on mercury contamination of macroinvertebrate communities of Grassland ponds. Environ Toxicol Chem 31:870–876. doi:10.1002/etc.1760

    CAS  Article  Google Scholar 

  17. Ingraham NL, Matthews RA (1995) The importance of fog-drip water to vegetation—point-reyes peninsula, California. J Hydrol 164:269–285. doi:10.1016/0022-1694(94)02538-m

    CAS  Article  Google Scholar 

  18. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921. doi:10.1128/aem.01602-06

    CAS  Article  Google Scholar 

  19. Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Caves Karst Stud 69:114–134

    Google Scholar 

  20. Liang L, Bloom NS, Horvat M (1994) Simultaneous determination of mercury speciation in biological-materials by GC/CVAFS after ethylation and room-temperature precollection. Clin Chem 40:602–607

    CAS  Google Scholar 

  21. Organization WHO (2010) Children’s exposure to mercury compounds

  22. Punzo F, Farmer C (2006) Life history and ecology of the wolf spider Pardosa sierra banks (Araneae : Lycosidae) in Southeastern Arizona. Southwest Nat 51:310–319. doi:10.1894/0038-4909(2006)51[310:lhaeot];2

  23. Rimmer CC, Miller EK, McFarland KP, Taylor RJ, Faccio SD (2010) Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19:697–709. doi:10.1007/s10646-009-0443-x

    CAS  Article  Google Scholar 

  24. Scheulhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18. doi:10.1579/0044-7447(2007)36[12:eoemot];2

  25. Udovic M, Drobne D, Lestan D (2009) Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 157:2822–2829. doi:10.1016/j.envpol.2009.04.023

    CAS  Article  Google Scholar 

  26. Weiss-Penzias PS et al (2012) Total and monomethyl mercury in fog water from the central California coast. Geophys Res Lett. doi:10.1029/2011gl050324

    Google Scholar 

  27. Zhang Z, Lu X, Wang Q, Zheng D (2009) Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City. Bull Environ Contam Toxicol 83:255–259. doi:10.1007/s00128-009-9688-6

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the Louis Stokes California Alliance for Minority Participation in STEM and the University of California at Santa Cruz (UCSC) Friends of Long Marine Laboratory for their financial support; members of the WIGS laboratory, especially Priya Ganguli, Christopher Conaway, and Robert Franks for their technical support; Christopher Lay, Jennifer Rojero and Paul Dvorson for their assistance in sampling; and lastly the Año Nuevo State Park Rangers for facilitating the access to Chalk Mountain.

Author information



Corresponding author

Correspondence to Cruz Ortiz Jr..

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortiz, C., Weiss-Penzias, P.S., Fork, S. et al. Total and Monomethyl Mercury in Terrestrial Arthropods from the Central California Coast. Bull Environ Contam Toxicol 94, 425–430 (2015).

Download citation


  • Atmospheric
  • Mercury
  • Terrestrial
  • Bioaccumulation
  • Invertebrates