Skip to main content
Log in

Uptake from Water, Internal Distribution and Bioaccumulation of Selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: Part B

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

75Se-selenite transfer was investigated in a phytoplankton-mussel-rat food chain model consisting of Scenedesmus obliquus (Turpin) Kützing, Unio mancus Lamark and Rattus norvegicus Berkenhout. 75Se-metabolized forms were investigated in order to identify potential critical steps in the food chain, as well as its relative bioavailability looking also at intracellular, cellular and organ partitioning. Tissue and intracellular distribution of 75Se in mussels fed with 75Se-S. obliquus was different compared to those exposed only to inorganic 75Se-selenite. The intracellular distribution of 75Se in the hepatopancreas and mantle of mussels fed 75Se-microalgae was similar to hepatic and renal distributions in rats, suggesting that their stomach dissociated larger 75Se-containing molecules. The 75Se partitioned from water (culture medium) to microalgae showing a bioconcentration factor of 435. The bottleneck in the trophic transfer of 75Se occurred between S. obliquusU. mancus. From microalgae to mussels and subsequently to rats no bioaccumulation was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baines SB, Fisher NS, Stewart R (2002) Assimilation and retention of selenium and other trace elements from crustacean food by juvenile striped bass (Morone saxatilis). Limnol Oceanogr 43:646–655

    Article  Google Scholar 

  • Boisson F, Gnassia-Barelli M, Romeo M (1995) Toxicity and accumulation of selenite and selenate in the unicellular marine alga Cricosphaera elongate. Arch Environ Contam Toxicol 28:487–493. doi:10.1007/BF00211631

    Article  CAS  Google Scholar 

  • Chapman PM, Adams WJ, Brooks ML et al (2010) Ecological assessment of selenium in the aquatic environment. SETAC Press, Pensacola, FL

    Book  Google Scholar 

  • Hopkins WA, Staub BP, Baionno JA et al (2005) Transfer of selenium from prey to predators in a simulated terrestrial food chain. Environ Poll 134:447–456. doi:10.1016/j.envpol.2004.09.010

    Article  CAS  Google Scholar 

  • Lemly AD (1985) Toxicology of selenium in a freshwater reservoir: implications for environmental hazard evaluation and safety. Ecotoxicol Environ Saf 10:314–338

    Article  CAS  Google Scholar 

  • Luoma SN, Presser TN (2009) Emerging opportunities in management of selenium contamination. Environ Sci Technol 43:8483–8487. doi:10.1021/es900828h

    Article  CAS  Google Scholar 

  • Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder J (1992) Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491

    Article  CAS  Google Scholar 

  • Ohlendorf HM, Kilness AW, Simmons JL et al (1998) Selenium toxicosis in wild aquatic birds. J Toxicol Environ Health 24:67–92. doi:10.1080/15287398809531141

    Article  Google Scholar 

  • Polettini AE, Fortaner S, Farina M, Groppi F, Manenti S, Libralato G, Sabbioni E (2014) Uptake from water, internal distribution and bioaccumulation of selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: Part A. Bull Environ Contam Toxicol. doi:10.1007/s00128-014-1407-2

  • Presser TS, Luoma SN (2010) A methodology for ecosystem-scale modeling of selenium. Integr Environ Assess Manag 6:685–710

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS (1994) Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey. Limnol Oceanogr 39:1783–1789

    Article  CAS  Google Scholar 

  • Sanders RW, Gilmour CC (1994) Accumulation of selenium in a model freshwater microbial food web. Appl Environ Microbiol 60:2677–2683

    CAS  Google Scholar 

  • Takayanagi K (2001) Acute Toxicity of waterborne Se(IV), Se(VI), Sb(III), and Sb(V) on red seabream (Pargus major). Bull Environ Contam Toxicol 66:808–813

    CAS  Google Scholar 

  • Wang W-X, Fisher NS, Luoma SN (1996) Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser 140:91–113

    Article  CAS  Google Scholar 

  • WHO (1987) Selenium–environmental health criteria 58—international programme on chemical safety, 1987, Geneva

  • Xu Y, Wang W-X (2002) Exposure and potential food chain transfer factor of Cd, Se, and Zn in marine fish Lutjanus argentimaculatus. Mar Ecol Prog Ser 238:173–186

    Article  CAS  Google Scholar 

  • Yu RQ, Wang WX (2004) Biokinetics of cadmium, selenium and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna. Environ Pollut 129:443–456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Mr. G. Tettamanti (Ascom, Milan) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Libralato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbioni, E., Polettini, AE., Fortaner, S. et al. Uptake from Water, Internal Distribution and Bioaccumulation of Selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: Part B. Bull Environ Contam Toxicol 94, 90–95 (2015). https://doi.org/10.1007/s00128-014-1406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1406-3

Keywords

Navigation