Zinc Tolerance and Zinc Removal Ability of Living and Dried Biomass of Desmodesmus communis

  • Zoltán Novák
  • Mihály Jánószky
  • Viktória B-Béres
  • Sándor Alex Nagy
  • István BácsiEmail author


Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25–160 mg L−1 zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L−1 zinc. The most effective zinc removal was observed at 5 mg L−1 zinc concentration, while maximal amount of removed zinc appeared in 15 mg L−1 zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range.


Phytoplankton Growth inhibitions Morphological changes Lipid-peroxidation 



The research was supported by the EU and co-financed by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043), by the Internal Research Project of the University of Debrecen and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.


  1. Bilgrami KS, Kumar S (1997) Effects of copper, lead and zinc on phytoplankton growth. Biol Plant 39(2):315–317CrossRefGoogle Scholar
  2. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702CrossRefGoogle Scholar
  3. Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257CrossRefGoogle Scholar
  4. Felföldy L (1987) A biológiai vízminősítés. 4. kiad. In: Vízügyi Hidrobiológia 16. – VGI, Budapest, 258Google Scholar
  5. Güclü Z, Ertan ÖO (2012) Toxicity and removal of zinc in the three species (Acutodesmus obliquus, Desmodesmus subspicatus and Desmodesmus armatus) belonging to the Family, Scenedesmaceae (Chlorophyta). Turkish J Fish Aquat Sci 12:309–314Google Scholar
  6. Hammer Ř, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  7. Hassler CS, Behra R, Wilkinson KJ (2005) Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquat Toxicol 74:139–149CrossRefGoogle Scholar
  8. Kessler E, Schäfer M, Hümmer C, Kloboucek A, Huss VAR (1997) Physiological, biochemical, and molecular characters for the taxonomy of the subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Bot Acta 110(3):244–250CrossRefGoogle Scholar
  9. Krienitz L, Bock C (2012) Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698:295–326CrossRefGoogle Scholar
  10. Monteiro CM, Marques AP, Castro PM, Malcata FX (2009) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20(5):629–641CrossRefGoogle Scholar
  11. Monteiro CM, Castro PML, Malcata FX (2011a) Capacity of simultaneous removal of zinc and cadmium from contaminated media, by two microalgae isolated from a polluted site. Environ Chem Lett 9:511–517CrossRefGoogle Scholar
  12. Monteiro CM, Fonseca SC, Castro PML, Malcata FX (2011b) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23:97–103CrossRefGoogle Scholar
  13. Monteiro CM, Castro PML, Malcata FX (2011c) Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ Chem Lett 9:169–176CrossRefGoogle Scholar
  14. Omar HH (2002a) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int Biodeter Biodegr 50:95–100CrossRefGoogle Scholar
  15. Omar HH (2002b) Adsorption of zinc ions by Scenedesmus obliquus and S. quadricauda and its effect on growth and metabolism. Biol Plant 45(2):261–266CrossRefGoogle Scholar
  16. Radway JC, Wilde EW, Whitaker MJ, Weissman JC (2001) Screening of algal strains for metal removal capabilities. J Appl Phycol 13(5):451–455CrossRefGoogle Scholar
  17. Rojíčková-Padrtová R, Maršálek B (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38(14):3329–3338CrossRefGoogle Scholar
  18. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26(4):223–235CrossRefGoogle Scholar
  19. Starodub ME, Wong PTS (1987) Short term and long term studies on individual and combined toxicities of copper, zinc and lead to Scenedesmus quadricauda. Sci Total Environ 63:101–110CrossRefGoogle Scholar
  20. Travieso L, Cañizares RO, Borja R, Benítez F, Domínguez AR, Dupeyrón R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62(2):144–151CrossRefGoogle Scholar
  21. Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404CrossRefGoogle Scholar
  22. Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9CrossRefGoogle Scholar
  23. Umisová D, Vìtovà M, Douskovà I, Bisovà K, Hlavovà M, Cizkovà M, Machàt J, Doucha J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9:58–74CrossRefGoogle Scholar
  24. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655CrossRefGoogle Scholar
  25. Visviki I, Rachlin JW (1991) The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta, in both acute and chronic exposure. Arch Environ Contam Toxicol 20:271–275CrossRefGoogle Scholar
  26. Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals, 1st edn. CRC Press, USA Boston, pp 7–43Google Scholar
  27. Wase J, Forster CF (2003) Biosorbents for metal ions. Taylor & Francis e-Library, UK LondonGoogle Scholar
  28. Wong MH, Kwan SH, Tam FY (1979) Comparative toxicity of manganese and zinc on Chlorella pyreonidosa, Chlorella salina and Scenedesmus quadricauda. Microbios Lett 12:37–46Google Scholar
  29. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  30. Zhou GJ, Peng FQ, Zhang LJ, Ying GG (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Sci Pollut Res 19(7):2918–2929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zoltán Novák
    • 1
  • Mihály Jánószky
    • 2
  • Viktória B-Béres
    • 2
  • Sándor Alex Nagy
    • 1
  • István Bácsi
    • 1
    Email author
  1. 1.Department of HydrobiologyUniversity of DebrecenDebrecenHungary
  2. 2.Environmental Protection and Nature Conservation Authority, Trans-Tisza RegionDebrecenHungary

Personalised recommendations