Occurrence of Glyphosate in Water Bodies Derived from Intensive Agriculture in a Tropical Region of Southern Mexico

  • Jovani Ruiz-Toledo
  • Ricardo Castro
  • Norma Rivero-Pérez
  • Ricardo Bello-Mendoza
  • Daniel Sánchez


Glyphosate is an agrochemical widely used to control weeds. However, glyphosate spreads to water bodies by spray-drift, run-off and leaching, potentially causing detrimental effects on non-target biota. There is no information on the occurrence of this herbicide in water bodies near crop fields in Mexico, although it is the most commonly used pesticide in this country. To fill this gap, we quantified glyphosate in water bodies from twenty-three locations, including natural protected areas and agricultural areas in southern Mexico, during the dry and the rainy seasons. We expected (1) higher concentrations during the dry season due to reduced dilution by precipitation and, (2) absence of glyphosate in the protected areas. In agreement with our expectation, concentration of glyphosate was higher during the dry season (up to 36.7 μg/L). Nonetheless, glyphosate was detected in all samples—including natural protected areas. These results emphasize the need for an evaluation of the impact of glyphosate on native species as well as regulate its use.


Herbicide Immunoassay Pollution Leaching Groundwater 



We acknowledge CONACYT for the scholarship granted to Jovani Ruiz-Toledo for postgraduate studies. We are also grateful to anonymous reviewers for their valuable comments that improved this manuscript. This research was funded by CONACYT-SAGARPA Project No. 163431.


  1. Abraxis LLC: Warminster PU Glyphosate HS Assay Kit 120T, PN 500084, Operating ManualGoogle Scholar
  2. Albert L (2005) Panorama de los plaguicidas en México. Rev Toxicol en Línea No 1–17Google Scholar
  3. Battaglin WA, Kolpin DW, Scribner EA et al (2005) Glyphosate, other herbicides, and transformation products in midwestern streams, 2002. J Am Water Res Assoc 41:323–332CrossRefGoogle Scholar
  4. Benachour N, Séralini G-E (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105. doi: 10.1021/tx800218n CrossRefGoogle Scholar
  5. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 456:441–456. doi: 10.1002/ps CrossRefGoogle Scholar
  6. Boyd DR (2006) The water we drink: an international comparison of drinking water standards and guidelines, David Suzu. 34Google Scholar
  7. Brower LP, Taylor OR, Williams EH et al (2012) Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv Divers 5:95–100. doi: 10.1111/j.1752-4598.2011.00142.x CrossRefGoogle Scholar
  8. Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789. doi: 10.1016/S0038-0717(01)00103-1 CrossRefGoogle Scholar
  9. Byer JD, Struger J, Klawunn P et al (2008) Low cost monitoring of glyphosate in surface waters using the ELISA method: an evaluation. Environ Sci Technol 42:6052–6057CrossRefGoogle Scholar
  10. Cerdeira AL, Gazziero DLP, Duke SO, Matallo MB (2011) Agricultural impacts of glyphosate-resistant soybean cultivation in South America. J Agric Food Chem 59:5799–5807. doi: 10.1021/jf102652y CrossRefGoogle Scholar
  11. Clegg BS, Stephenson GR, Hall JC (1999) Development of an enzyme linked immunosorbent assay for the detection of glyphosate. J Agric Food Chem 47:5031–5037. doi: 10.1021/jf990064x CrossRefGoogle Scholar
  12. CONABIO (2012) Resultados del Análisis de Riesgo a la solicitud 007/2012 para la liberación al ambiente de Glycine max (L.) Merr. genéticamente modificado MON-Ø4Ø32-6 (GTS 40-3-2). Com Nac para el Conoc y Uso la Biodivers 6:1–36.
  13. CONAGUA (2013) Precipitación a nivel nacional y por entidad federativa 2013. 1Google Scholar
  14. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30. doi: 10.1002/ps.2212 CrossRefGoogle Scholar
  15. Cowell JE (1988) Storage stability of glyphosate in environmental water. Monsanto Co, St. LouisGoogle Scholar
  16. Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803–1806. doi: 10.1289/ehp.9374 Google Scholar
  17. Edwards WM, Triplett GB Jr, Kramer RM (1980) A watershed study of glyphosate transport in runoff, runoff, water quality, buffer function. J Environ Qual 9:661–665CrossRefGoogle Scholar
  18. Evans SC, Shaw EM, Rypstra AL (2010) Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 19:1249–1257. doi: 10.1007/s10646-010-0509-9 CrossRefGoogle Scholar
  19. Feng JC, Thompson DG, Reynolds PE (1990) Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment. J Agric Food Chem 38:1110–1118. doi: 10.1021/jf00094a045 CrossRefGoogle Scholar
  20. Giesy J, Dobson S, Solomon K (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Environ Contam Toxicol 167:35–120Google Scholar
  21. Gimsing AL, Borggaard OK, Sestoft P (2004) Modeling the kinetics of the competitive adsorption and desorption of glyphosate and phosphate on goethite and gibbsite and in soils. Environ Sci Technol 38:1718–1722. doi: 10.1021/es030572u CrossRefGoogle Scholar
  22. Hokanson R, Fudge R, Chowdhary R, Busbee D (2007) Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Hum Exp Toxicol 26:747–752CrossRefGoogle Scholar
  23. Kaiser K (2011) Preliminary study of pesticide drift into the Maya Mountain protected areas of Belize. Bull Environ Contam Toxicol 86:56–59. doi: 10.1007/s00128-010-0167-x CrossRefGoogle Scholar
  24. Kjaer J, Olsen P, Ullum M, Grant R (2005) Leaching of glyphosate and amino-methylphosphonic acid from Danish agricultural field sites. J Environ Qual 34:608–620CrossRefGoogle Scholar
  25. Landry D, Dousset S, Fournier J-C, Andreux F (2005) Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environ Pollut 138:191–200. doi: 10.1016/j.envpol.2005.04.007 CrossRefGoogle Scholar
  26. Ludvigsen GH, Lode O (2001) Results from the agricultural and environmental monitoring program of pesticides in Norway 1995–1999. Fresen Environ Bull 10:470–474Google Scholar
  27. Mallat E, Barceló D (1998) Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. J Chromatogr 823:129–136CrossRefGoogle Scholar
  28. Mörtl M, Németh G, Juracsek J et al (2013) Determination of glyphosate residues in Hungarian water samples by immunoassay. Microchem J 107:143–151. doi: 10.1016/j.microc.2012.05.021 CrossRefGoogle Scholar
  29. Payne NJ (1992) Off-target glyphosate from aerial silvicultural applications, and buffer zones required around sensitive areas. Pestic Sci 34:1–8. doi: 10.1002/ps.2780340102 CrossRefGoogle Scholar
  30. Payne NJ, Feng JC, Reynolds PE (1990) Off-target deposits and buffer zones required around water for aerial glyphosate applications. Pestic Sci 30:183–198. doi: 10.1002/ps.2780300206 CrossRefGoogle Scholar
  31. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66. doi: 10.1016/j.envpol.2008.01.015 CrossRefGoogle Scholar
  32. Relyea RA (2005) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124CrossRefGoogle Scholar
  33. Rendon-von-Osten J, Ortiz-Arana A, Guilhermino L, Soares A (2005) In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636CrossRefGoogle Scholar
  34. Richard S, Moslemi S, Sipahutar H et al (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720CrossRefGoogle Scholar
  35. Rubio F, Eldhuis LIJV, Legg BSTC et al (2003) Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J Agric Food Chem 51:691–696CrossRefGoogle Scholar
  36. Salazar NJ, Aldana ML (2011) Herbicida Glifosato: Usos, toxicidad y regulación. Rev Cienc Biol Salud XIII:23–28Google Scholar
  37. Sanchís J, Kantiani L, Llorca M et al (2012) Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 402:2335–2345. doi: 10.1007/s00216-011-5541-y CrossRefGoogle Scholar
  38. Schuette J (1998) Environmental fate of glyphosate. Environ Monit Pest Manag Dep Pestic Regul, Sacramento, CA 95824-5624Google Scholar
  39. Séralini G-E, Clair E, Mesnage R et al (2012) Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol 50:4221–4231. doi: 10.1016/j.fct.2012.08.005 CrossRefGoogle Scholar
  40. Siimes K, Rämö S, Welling L et al (2006) Comparison of the behaviour of three herbicides in a field experiment under bare soil conditions. Agric Water Manag 84:53–64. doi: 10.1016/j.agwat.2006.01.007 CrossRefGoogle Scholar
  41. Solomon K, Thompson D (2013) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J Toxicol Environ Health B Crit Rev 6(3):289–324. doi: 10.1080/15287390390155571 CrossRefGoogle Scholar
  42. Strange-Hansen R, Holm PE, Jacobsen OS, Jacobsen CS (2004) Sorption, mineralization and mobility of N-(phosphonomethyl)glycine (glyphosate) in five different types of gravel. Pest Manag Sci 60:570–578. doi: 10.1002/ps.842 CrossRefGoogle Scholar
  43. Struger J, Thompson D, Staznik B et al (2008) Occurrence of glyphosate in surface waters of Southern Ontario. Bull Environ Contam Toxicol 80:378–384. doi: 10.1007/s00128-008-9373-1 CrossRefGoogle Scholar
  44. Székács A, Darvas B (2012) Forty years with glyphosate. In: Hasaneen MNAE-G (ed) Herbicides—properties, synthesis and control of weeds, 2012th edn. Intech, Rijeka, pp 247–284.
  45. Torstensson L, Börjesson E, Stenström J (2005) Efficacy and fate of glyphosate on Swedish railway embankments. J Pest Manag Sci 61:881–886. doi: 10.1002/ps.1106 CrossRefGoogle Scholar
  46. Winfield TW (1990) Determination of glyphosate in drinking water by direct-aqueous-injection HPLC, post-column derivatization, and fluorescence detection. Method 547. Environmental monitoring system laboratory, Office of research and development. U.S. Environmental Protection Agency, Cincinnati, OH.
  47. Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151. doi: 10.1002/ps.1122 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jovani Ruiz-Toledo
    • 1
  • Ricardo Castro
    • 1
  • Norma Rivero-Pérez
    • 2
  • Ricardo Bello-Mendoza
    • 1
    • 3
  • Daniel Sánchez
    • 1
  1. 1.El Colegio de la Frontera SurTapachulaMexico
  2. 2.Centro Regional de Investigación en Salud PúblicaInstituto Nacional de Salud PúblicaTapachulaMexico
  3. 3.University of CanterburyChristchurchNew Zealand

Personalised recommendations