Skip to main content
Log in

Acute and Chronic Response of Daphnia magna Exposed to TiO2 Nanoparticles in Agitation System

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Aquatic toxicity of titanium dioxide nanoparticles (TiO2 NPs) to Daphnia magna was characterized using a completely stirred bioassay system intended to keep particles in suspension thereby maintaining a consistent exposure. The 48-h LC50 was 4.5 mg/L TiO2 NPs, whereas LC50 values for 7 and 14-days exposures were 2.7 and 1.9 mg/L, respectively. An exposure of 1.5 mg/L over a 21-days exposure resulted in significant reductions in fecundity. While reproduction was initially reduced in the 0.5 and 1.0 mg/L exposures, it recovered and was similar to the control by 21 days. For reproduction inhibition, NOEC was 1.0 mg/L. Exposure to 2.5 mg/L TiO2 NPs resulted in 40 % of the organisms failing to become gravid; all surviving organisms exposed to 5.0 mg/L failed to become gravid. The increased sensitivity was due to the refinement in the bioassay system that kept NP in suspension resulting in consistent exposure concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchreriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Bar-llan O, Louis KM, Pedersen JA, Hamers RJ, Peterson RE, Heideman W (2012) Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6:670–679

    Article  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    Article  CAS  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants: effect of size and crystalline structure. Chemosphere 90:1083–1090

    Article  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effect. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Gottschalk F, Kost E, Nowak B (2013) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287

    Article  CAS  Google Scholar 

  • Herbrandson C, Bradbury SP, Swackhamer DL (2003) Influence of suspended solids on acute toxicity of carbofuran to Daphnia magna: I interactive effects. Aquat Toxicol 63:333–342

    Article  CAS  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Hyne RV, Gale SA, King CK (2005) Laboratory culture and life-cycle experiments with the benthic amphipod Melita Plumulosa (Zeidler). Environ Toxicol Chem 24:2065–207327

    Article  CAS  Google Scholar 

  • Kim KT, Klaine SJ, Cho J, Kim S, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408:2268–2272

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon D, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implication for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352

    Article  CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  • Robinson SE, Capper NA, Klaine SJ (2010) The effects of continuous and pulsed exposures of suspended clay on the survival, growth and reproduction of Daphnia magna. Environ Toxicol Chem 29:168–175

    Article  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15

    Article  CAS  Google Scholar 

  • Tan C, Wang WX (2014) Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut 186:36–42

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/600/4-90/027F. Washington, DC

Download references

Acknowledgments

This study was supported by the Research Program funded by the Seoul National University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang D. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KT., Klaine, S.J. & Kim, S.D. Acute and Chronic Response of Daphnia magna Exposed to TiO2 Nanoparticles in Agitation System. Bull Environ Contam Toxicol 93, 456–460 (2014). https://doi.org/10.1007/s00128-014-1295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1295-5

Keywords

Navigation