Skip to main content

Arsenate Resistant Penicillium coffeae: A Potential Fungus for Soil Bioremediation

Abstract

Bioremediation is an effective method for the treatment of major metal contaminated sites. Fungi were isolated from soil samples collected from different arsenate contaminated areas across India. An isolate, Penicillium coffeae, exhibited resistance to arsenate up to 500 mM. Results indicated that pretreatment of biomass with alkali (NaOH) enhanced the percentage of adsorption to 66.8 % as compared to that of live and untreated dead biomass whose adsorption was 22.9 % and 60.2 % respectively. The physiological parameters evaluated in this study may help pilot studies aimed at bioremediation of arsenate contaminated effluents using arsenate resistant fungus P. coffeae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahalya N, Kanamadi RD, Ramachandra TV (2007) Cr(VI) and Fe(III) removal using Cajanus cajan husk. J Environ Biol 28(4):765–769

    CAS  Google Scholar 

  2. Alluri HK, Roanda SR, Settalluri VS, Bondii JS, Suryanarayana V, Venkateswar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6(25):2924–2931

    CAS  Google Scholar 

  3. Al-Sabbak M, Sadik Ali S, Savabi O, Savabi G, Dastgiri S, Savabieasfahani M (2012) Metal contamination and the epidemic of congenital birth defects in Iraqi cities. Bull Environ Contam Toxicol 89:937–944

    CAS  Article  Google Scholar 

  4. Bishnoi NR, Garima (2005) Fungus—an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64:93–100

    CAS  Google Scholar 

  5. El-Sayed, El-Morsy M (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189

    Article  Google Scholar 

  6. Kang SY, Kim DW, Kim KW (2007) Enhancement of As(V) adsorption onto activated sludge by methylation treatment. Environ Geochem Health 29(4):313–318

    CAS  Article  Google Scholar 

  7. Kendall MJ, Paul RT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  Google Scholar 

  8. Kumar P, Srivastava AV, Dwivedi S, Chakrabarty D, Nandita S, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  Google Scholar 

  9. Lewis WP, Bretagne S, Klingspor L, Willem Melchers JG, McCulloch E, Schulz B, Finnstrom N, Mengoli C, Rosemary Barnes A, Peter Donnelly J, Loeffler J, On behalf of the European Aspergillus PCR Initiative (2010) Aspergillus PCR: one step closer to standardization. J Clin Microbiol 48:1231–1240

    Article  Google Scholar 

  10. Maheswari S, Murugesan AG (2011) Removal of arsenic (III) ions from aqueous solution using Aspergillus flavus isolated from arsenic contaminated site. Indian J Chem Technol 18:45–52

    CAS  Google Scholar 

  11. Moller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116

    CAS  Article  Google Scholar 

  12. Narsi R, Bishnoi RK, Bishnoi K (2007) Biosorption of Cr(VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Indian J Exp Biol 45:654–657

    Google Scholar 

  13. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  Google Scholar 

  14. Sathishkumar M, Binupriya AR, Swaminathan K, Choi JG, Yun SE (2008) Bio-separation of toxic arsenate ions from dilute solutions by native and pretreated biomass of Aspergillus fumigatus in batch and column mode: effect of biomass pretreatment. Bull Environ Contam Toxicol 81(3):316–322

    CAS  Article  Google Scholar 

  15. Say R, Yılmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38:2039–2053

    CAS  Article  Google Scholar 

  16. Sulaymon AH, Ebrahim SE, Mohammed-Ridha MJ (2013) Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environ Sci Pollut Res Int 20(1):175–187

    CAS  Article  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    CAS  Article  Google Scholar 

  18. Visoottiviseth P, Ponviroj N (2001) Selection of fungi capable of removing toxic arsenic compounds from liquid medium. Sci Asia 27:83–92

    CAS  Article  Google Scholar 

  19. Wei YT, Zheng YM, Paul Chen J (2010) Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. J Colloid Interface Sci 356(1):234–239

    Article  Google Scholar 

  20. Yan G, Viraraghavan T (2000) Effect of pretreatment on the biosorption of heavy metals on Mucor rouxii. Water SA 26:119–123

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Savitha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhargavi, S.D., Savitha, J. Arsenate Resistant Penicillium coffeae: A Potential Fungus for Soil Bioremediation. Bull Environ Contam Toxicol 92, 369–373 (2014). https://doi.org/10.1007/s00128-014-1212-y

Download citation

Keywords

  • Bioremediation
  • Heavy metal
  • Arsenate
  • Biosorption
  • Dead biomass