Skip to main content

Background Concentrations of Heavy Metals in Benthos from Transboundary Rivers of the Transbaikalia Region, Russia

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The concentrations (mg/kg dry weight) of Cu, Zn, As, Cd, Hg, and Pb were measured in benthic macroalgae and invertebrates collected in the upper transboundary tributaries of the Onon River, Transbaikalia, Russia. The background concentration ranges in Cladophora fracta, Ulothrix zonata and Zygnemataceae were: 6.4–9.1 for Cu, 27.2–73.1 for Zn, 0.4–0.9 for Cd, 6.7–35.3 for As, 0.01–0.02 for Hg, and 1.9–4.3 for Pb. In Brachycentrus americanus and Lymnaea media the concentration ranges were: 9.0–25.5 for Cu, 21.4–96.0 for Zn, 0.1–0.3 for Cd, 1.7–5.6 for As, 0.004–0.02 for Hg, and 0.4–2.2 for Pb. The concentrations of Cu, Zn, Pb, and Hg were consistent with data for uncontaminated areas. Under contamination conditions the concentrations in C. fracta were: 938 for Zn, 513 for Pb, and 9.5 for Cd; in Lymnaea media were: 46.8 for Cu, 176 for Zn, 52.3 for Pb, and 3.0 for Cd. All the organisms showed a common response to contamination, and consequently can be used as biomonitors of contamination by heavy metals.

This is a preview of subscription content, access via your institution.

Fig. 1


  • Bezmaternykh DM (2008) Mollusca Lymnaea stagnalis and Lymnaea ovata as accumulative indicator heavy metal pollution of freshwater (on river Barnaulka example). Probl Biogeochem Geochem Ecol 1(5):112–117 (in Russian)

    Google Scholar 

  • Chu JM, Ko IH, Janchivdorj L, Gomboev B, Lee CH, Kang SI (2009) Integrated water management model on the Selenge River basin. Basin assessment and integrated analysis (Phase 2). Korea Environment Institute, Seoul, p 369

    Google Scholar 

  • Cid N, Ibanez C, Palanques A, Prat N (2010) Patterns of metal bioaccumulation in two filter-feeding macroinvertebrates: exposure distribution, inter-species differences and variability across developmental stages. Sci Total Environ 408:2795–2806

    Article  CAS  Google Scholar 

  • FAF (2010) On approval of water quality standards fishery water bodies, including those of the maximum permissible concentrations of harmful substances in the waters of fishery water bodies. Federal Agency for Fisheries. Available from Accessed 31 July 2013 (in Russian)

  • Karadede-Akin H, Ünlü E (2007) Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ Monit Assess 131:323–337

    Article  CAS  Google Scholar 

  • Klishko OK (2012) Background data on bioaccumulation of heavy metals in hydrobionts of udokan deposit. In: Yurgenson GA (ed) Mineralogy and geochemistry of landscape of mountaine-ore territories. Modern mineral formation. Poisk, Chita, pp 53–58 (in Russian)

    Google Scholar 

  • Komulainent SF, Morozov AK (2010) Heavy metal dynamics in the periphyton in small rivers of Kola Peninsula. Water Resour 6:874–878

    Article  Google Scholar 

  • Kuklin AP (2012) Heavy metal content of macroalgae ponds and streams Transbaikalia. In: Yurgenson GA (ed) Mineralogy and geochemistry of landscape of mountaine-ore territories Modern mineral formation. Poisk, Chita, pp 58–60 (in Russian)

    Google Scholar 

  • Kulikova NN, Saibatalova EV, Kozyreva EI (2010) Chemical elementary composition of Ulothrix zonata (Web. and Mohr) Kutz. in the Bolshiye Koty Bay of Lake Baikal. Biodiversity, ecology problems of the mountainous Altai and the adjacent regions: present, past, future. In: Papers of the II international conference. RIO GOUVPO Mountane-Altai GU, Barnaul, pp 108–112 (in Russian)

  • Leonova GA, Bobrov VA (2012) Geochemical role of plankton of the continental water bodies of Siberia in concentrating and biosedimentation of microelements. Academic Publishers GEO, Novosibirsk (in Russian)

    Google Scholar 

  • Nikanorov AM, Zhulidov AV (1991) Metal biomonitoring in freshwater ecosystems. Gidrometeoizdat, Leningrad (in Russian)

    Google Scholar 

  • Patova EN, Sterlagova IN (2012) The content of heavy metals in water and their accumulation in macrophyte algae as an example of mountain-valley lakes (Polar Urals). Water Chem and Ecol 5:114–121 (in Russian)

    Google Scholar 

  • Pogrebnyak YuF, Kondratenko LA, Laperdina TG, Tsibikdorzhiyev Zh, Ulybina GL, Suslenkova RM, Filatov AV, Burasov VI (1989) Time variations of the content of ore elements in the waters of the streams of dispersion. In: Krendelev FP, Shvarcev SL (eds) Ore elements in the waters of the zone of deposits hypergenesis. Nauka, Novosibirsk, pp 53–81 (in Russian)

    Google Scholar 

  • Rainbow PS, Hildrew AG, Smith BD, Geatches T, Luoma SN (2012) Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos. Environ Pollut 166:196–207

    Article  CAS  Google Scholar 

  • Robinson B, Kimb N, Marchetti M, Moni C, Schroeter L, Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Sychra J, Čelechovská O, Svobodová Z, Sychra O (2011) Lead, mercury and cadmium content in bottom sediments, reed (Phragmites australis) beds and great pond snails (Lymnaea stagnalis) in fishponds and the role of littoral zones in their accumulation. Acta Vet Brno 80:313–321

    Article  CAS  Google Scholar 

  • U.S. EPA (2013) National recommended water quality criteria, US Environmental Protection Agency. Available from Accessed 20 May 2013

  • Vetrov VA, Kuznetsova AI (1997) Microelements in natural environments of Lake Baikal region. SB RAN, Novosibirsk (in Russian)

    Google Scholar 

  • Wagemann R, Snow NB, Rosenberg DM, Lutz A (1978) Arsenic in sediments, water and aquatic biota from lakes in the vicinity of Yellowknife, northwest territories, Canada. Arch Environ Contam Toxicol 7:169–191

    Article  CAS  Google Scholar 

  • Zanella EF (1982) Shifts in caddisfly species composition in Sacramento River invertebrate communities in the presence of heavy metal contamination. Bull Environ Contam Toxicol 29:306–312

    Article  CAS  Google Scholar 

Download references


This research was a part of a project funded by the RFFR-Zabaikalsky krai No. 11-05-98034-r_siberia_a.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Petr Viktorovich Matafonov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuklin, A.P., Matafonov, P.V. Background Concentrations of Heavy Metals in Benthos from Transboundary Rivers of the Transbaikalia Region, Russia. Bull Environ Contam Toxicol 92, 137–142 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: