Skip to main content

Effects of Cadmium, Copper and Zinc on Growth of Four Isolated Algae from a Highly Polluted Argentina River


Toxicity of cadmium, copper and zinc was tested on four green algal species (Ankistrodesmus fusiformis, Chlorella ellipsoidea, Monoraphidium contortum and Scenedesmus acuminatus) isolated from a highly polluted river (Matanza–Riachuelo River, Buenos Aires, Argentina). The relative abundance of these species in river waters showed that C. ellipsoidea was the most abundant species (mean 4,540 ind mL−1), whereas the less abundant species was S. acuminatus (mean 220 ind mL−1). The most sensitive species was A. fusiformis, which EC50 were Cd = 141 μg L−1, Cu = 72 μg L−1, and Zn = 199 μg L−1, whereas C. ellipsoidea was the most resistant species to copper (EC50 = 489 μg L−1) and cadmium (EC50 = 429 μg L−1), and M. contortum and S. acuminatus were the most resistant species to zinc (EC50 = 381 and 394 μg L−1, respectively).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Texas: Univ Texas Public N°6318

  2. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36. doi:10.1016/S0269-7491(97)00110-3

    CAS  Article  Google Scholar 

  3. Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae as sequester heavy metals via phytochelatin complexes. Arch Microbiol 150:197–202

    CAS  Article  Google Scholar 

  4. Guéguen C, Gilbin R, Pardos M, Dominik J (2004) Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland). Appl Geochem 19:153–162. doi:10.1016/S0883-2927(03)00110-0

    Article  Google Scholar 

  5. Janssen CR, Heijerick DG (2003) Algal toxicity tests for environmental risk assessments of metals. Rev Environ Contam Toxicol 178:23–52

    CAS  Google Scholar 

  6. Kalinowska R, Pawlik-Skowronska B (2010) Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ Pollut 158:2778–2785. doi:10.1016/j.envpol.2010.03.003

    CAS  Article  Google Scholar 

  7. Küpper H, Setlik I, Spiller M, Küpper FS, Prášil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38(3):429–441. doi:10.1046/j.1529-8817.2002.01148

    Article  Google Scholar 

  8. Lombardi AT, Hidalgo TMR, Vieira AAH (2005) Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 60:453–459. doi:10.1016/j.chemosphere.2004.12.071

    CAS  Article  Google Scholar 

  9. Magdaleno A, Puig A, de Cabo L, Salinas C, Arreghini S, Korol S, Bevilacqua S, López L, Moretton J (2001) Water pollution in an urban Argentine river. Bull Environ Contam Toxicol 67:408–415

    CAS  Article  Google Scholar 

  10. Marker AFH, Nusch EA, Rai H, Riemann B (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch Hydrobiol Beih Ergebn Limnol 14:91–106

    CAS  Google Scholar 

  11. Omar HH (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effects on growth and metabolism. Int Biodeter Biodegr 50:95–100. doi:10.1016/S0964-8305(02)00048-3

    CAS  Article  Google Scholar 

  12. Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Review. Chemosphere 64(1):1–10. doi:10.1016/j.chemosphere.2005.11.024

    CAS  Article  Google Scholar 

  13. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65. doi:10.1016/j.plaphy.2011.11.009

    CAS  Article  Google Scholar 

  14. Sabater C, Carrasco JM (2001) Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study. Chemosphere 44:1775–1781. doi:10.1016/S0045-6535(00)00575-0

    CAS  Article  Google Scholar 

  15. Takami R, Almeida JV, Vardaris CV, Colepicolo P, Barrosa MP (2012) The interplay between thiol-compounds against chromium (VI) in the freshwater green alga Monoraphidium convolutum: toxicology, photosynthesis, and oxidative stress at a glance. Aquat Toxicol 118–119:80–87. doi:10.1016/j.aquatox.2012.03.018

    Article  Google Scholar 

  16. US Environmental Protection Agency (1989) Algal (Selenastrum capricornutum) growth test. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Environmental Monitoring System Laboratory. Environmental Protection Agency

  17. Utermöhl H (1958) Zur vervokummung der quantitativen phytoplankton methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  18. Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Review. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150. doi:10.1016/j.aca.2007.11.018

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anahí Magdaleno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magdaleno, A., Vélez, C.G., Wenzel, M.T. et al. Effects of Cadmium, Copper and Zinc on Growth of Four Isolated Algae from a Highly Polluted Argentina River. Bull Environ Contam Toxicol 92, 202–207 (2014).

Download citation


  • Cadmium
  • Copper
  • Zinc
  • Green algae
  • Native algae
  • Toxicity