Germination and Root Elongation Bioassays in Six Different Plant Species for Testing Ni Contamination in Soil

  • Giovanna Visioli
  • Federica D. Conti
  • Ciro Gardi
  • Cristina Menta


In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni.


Phytotoxicity Bioassay Soil toxicity Nickel Bioindicator 


  1. Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol Plant 92:675–680CrossRefGoogle Scholar
  2. Baudgrasset F, Baudgrasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374CrossRefGoogle Scholar
  3. Branzini A, Zubillaga MS (2010) Assessing phytotoxicity of heavy metals in remediated soil. Int J Phytorem 12:335–342CrossRefGoogle Scholar
  4. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803CrossRefGoogle Scholar
  5. Carlson CL, Adriano DC, Sajwan KS, Abels SL, Thoma DP, Driver JT (1991) Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut 59:231–240CrossRefGoogle Scholar
  6. Chardot V, Echevarria G, Gury M, Massoura S, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21CrossRefGoogle Scholar
  7. Chen C, Zhou Q, Bao Y, Li Y, Wang P (2010) Ecotoxicological effects of polycyclic musks and cadmium on seed germination and seedling growth of wheat (Triticum aestivum). J Environ Sci 22:1966–1973CrossRefGoogle Scholar
  8. Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity next term using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464CrossRefGoogle Scholar
  9. Dutka BJ (1989) Methods for microbiological and toxicological analysis of waters and sediments. National Water Research Institute (NWRI), BurlingtonGoogle Scholar
  10. EC (2002) Guidance document on terrestrial ecotoxicology under council directive 91/414/EEC.
  11. Espen L, Pirovano L, Cocucci SM (1997) Effect of Ni+ during the early phases of radish (Raphanus sativus) seed germination. Environ Exp Bot 38:187–197CrossRefGoogle Scholar
  12. Fiskesjö G (1993) The Allium test in wastewater monitoring. Environ Toxicol Water Qual 8:291–298CrossRefGoogle Scholar
  13. Fletcher JS, Johnson FL, McFalane JC (1988) Database assessment of phytotoxicity data published on terrestrial vascular plants. Environ Toxicol Chem 7:615–622CrossRefGoogle Scholar
  14. Fox DR (2008) NECS, NOECS and the ECx. Australas J Ecotox 14:7–9Google Scholar
  15. Fox DR, Billoir E, Charles S, Delignette-Muller ML, Lopes C (2012) What to do with NOECS/NOELS—prohibition or innovation? Integr Environ Assess Manag 8:764–766CrossRefGoogle Scholar
  16. Gonçalves JF, Becker AG, Pereira LB, da Rocha JBT, Cargnelutti D, Tabaldi LA, Farias JG, Fiorenza AM, Flores EMM, Nicoloso FT, Schetinger MRC (2009) Response of Cucumis sativus L. seedlings to Pb exposure. Bras Soc Plant Physiol 21:175–186Google Scholar
  17. Gong P, Wilke B-M, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitroluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157CrossRefGoogle Scholar
  18. Gong P, Wilke BM, Strozzi E, Fleischmann S (2001) Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44:491–500CrossRefGoogle Scholar
  19. Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L (2010) Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiol Plant 32:59–65CrossRefGoogle Scholar
  20. Harter RD, Naidu R (1995) Role of metal–organic complexation in metal sorption by soils. Adv Agron 55:219–263CrossRefGoogle Scholar
  21. ISO/CD 17126 (2001) Soil quality—determination of the effects of pollutants on soil flora—seedling emergence, screening test with lettuce (Lactuca sativa L.). ISO/TC 190/SC 4N 181Google Scholar
  22. Khoshgoftarmanesh AH, Bahmanziari H (2012) Stimulating and toxicity effects of nickel on growth, yield, and fruit quality of cucumber supplied with different nitrogen sources. J Plant Nutr Soil Sci 175:474–481CrossRefGoogle Scholar
  23. Kočí V, Mocová K, Kulovaná M, Vosáhlová S (2010) Phytotoxicity tests of solid wastes and contaminated soils in the Czech Republic. Environ Sci Pollut Res 17:611–623CrossRefGoogle Scholar
  24. Landis WL, Chapman PM (2011) Well past time to stop using NOELs and LOELs. Integr Environ Assess Manag 7:VI–VIIICrossRefGoogle Scholar
  25. Ling T, Fangke Y, Jun R (2010) Effect of mercury to seed germination, coleoptile growth and root elongation of four vegetables. Res J Phytochem 4:225–233CrossRefGoogle Scholar
  26. Mishra A, Choudhuri MA (1998) Ameliorant of lead and mercury effect on germination and rice seedling growth by antioxidants. Biol Plant 41:469–473CrossRefGoogle Scholar
  27. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213CrossRefGoogle Scholar
  28. OECD (1984) Terrestrial plants: growth test. OECD Guidelines for testing of chemicals, Paris: No. 208Google Scholar
  29. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E et al (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734Google Scholar
  30. Reynolds T (1989) Comparative effects of heterocyclic compounds on inhibition of lettuce fruit germination. J Exp Bot 40:391–404CrossRefGoogle Scholar
  31. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22CrossRefGoogle Scholar
  32. Sharifi M, Sadeghi Y, Akbarpour M (2007) Germination and growth of six plant species on contaminated soil with spent oil. Int J Environ Sci Technol 4:463–470CrossRefGoogle Scholar
  33. Soudek P, Katrusáková A, Sedlácek L, Petrová S, Kocí V, Marsík P, Griga M, Vanek T (2010) Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Arch Environ Contam Toxicol 59(2):194–203CrossRefGoogle Scholar
  34. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL
  35. Tiqua SM, Tam NFY, Hodgkiss IJ (1996) Effect of composting on phytotoxicity of spent pigmanure sawdust litter. Environ Pollut 93:249–256CrossRefGoogle Scholar
  36. US Environmental Protection Agency (1982) Seed germination/root elongation toxicity tests EC12. Office of Toxic Substances, Washington, DCGoogle Scholar
  37. US Food and Drug Administration (1987) Seed germination and root elongation, environmental assessment technical assistance document 406. Centre for Food Safety and Applied Nutrition, Center for Veterinary Medicine, Washington, DCGoogle Scholar
  38. Valerio ME, Garcìa JF, Peinado FM (2007) Determination of phytotoxicity of soluble elements in soils, based on a biomass with lettuce (Lactuca sativa L.). Sci Total Environ 378:63–66CrossRefGoogle Scholar
  39. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:266–290CrossRefGoogle Scholar
  40. Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. Caerulescens. Environ Exp Bot 77:156–164CrossRefGoogle Scholar
  41. Visioli G, Menta C, Gardi C, Conti FD (2013) Metal toxicity and biodiversity in serpentine soils: application of bioassays tests and microarthropod index. Chemosphere 90:1267–1273CrossRefGoogle Scholar
  42. Wang W, Keturi PH (1990) Comparative seed germination tests using ten plant species for toxicity assessment of metals engraving effluent sample. Water Air Soil Pollut 52:369–376CrossRefGoogle Scholar
  43. Wang W, Williams JM (1990) The use of phytotoxicity tests (common duckweed, cabbage, and millet) for determining effluent toxicity. Environ Monit Assess 14:45–58CrossRefGoogle Scholar
  44. Wang X, Sun C, Gao S, Wang L, Shuokui H (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity in Cucumis sativus. Chemosphere 44:1711–1721CrossRefGoogle Scholar
  45. Warne MSJ, van Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australas J Ecotox 14:1–5Google Scholar
  46. Welch RM (1981) The biological significance of nickel. J Plant Nutr 31:345–356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giovanna Visioli
    • 1
  • Federica D. Conti
    • 1
  • Ciro Gardi
    • 2
  • Cristina Menta
    • 1
  1. 1.Department of Life SciencesUniversity of ParmaParmaItaly
  2. 2.Joint Research Centre, Institute for Environment and SustainabilityEuropean CommissionIspraItaly

Personalised recommendations