Skip to main content

Investigating Pseudomonas putidaCandida humicola Interactions as Affected by Chelate Fe(III) in Soil

Abstract

Microcalorimetric technique was applied to assess the toxic effect of EDTA-chelated trivalent iron on Pseudomonas putida (P. putida) (bacterium), Candida humicola (C. humicola) (fungus) and their mixture in sterilized soil. Microbial growth rate constant k, total heat evolution Q T, metabolic enthalpy ∆H met, mass specific heat rate J Q/S, microbial biomass C and inhibitory ratio I were calculated. Results showed that microcalorimetric indexes decreased with the increasing Fe(III)-EDTA complex concentration. Comparing the single and mixed strains, the effect of Fe(III) on bacterium-fungus interaction was dominant at lower dose, whereas, the metal toxicity at high dose of Fe was the main factor affecting P. putida and C. humicola activity. Thus, the mixture had moderate tolerance to the iron overload, and exhibit synergistic interaction in exponential growth phase (0–0.3 mg g−1). The results of glucose degradation showed that glucose was consumed totally at the end of exponential phase of microbial growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barajas-Aceves M (2005) Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Bioresour Technol 96:1405–1414

    CAS  Article  Google Scholar 

  2. Barros N, Feijóo S, Fernández S, Simoni JA, Airoldi C (2000a) Application of the metabolic enthalpy change in studies of soil microbial activity. Thermochim Acta 356:1–7

    CAS  Article  Google Scholar 

  3. Barros N, Feijóo S, Simoni A, Critter SAM, Airoldi C (2000b) Interpretation of the metabolic enthalpy change, ΔHmet, calculated for microbial growth reactions in soils. J Therm Anal Calorim 63:577–588

    Article  Google Scholar 

  4. Barros N, Airoldi C, Simoni JA, Ramajo B, Espina A, García JR (2006) Calorimetric determination of the effect of ammonium-iron(II) phosphate monohydrate on Rhodic Eutrudox Brazilian soil. Thermochim Acta 441:89–95

    CAS  Article  Google Scholar 

  5. Barros N, Gallego M, Feijóo S (2007a) Sensitivity of calorimetric indicators of soil microbial activity. Thermochim Acta 458:18–22

    CAS  Article  Google Scholar 

  6. Barros N, Salgado J, Feijóo S (2007b) Calorimetry and soil. Thermochim Acta 458:11–17

    CAS  Article  Google Scholar 

  7. Critter SAM, Freitas SS, Airoldi C (2002) Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim Acta 394:133–144

    CAS  Article  Google Scholar 

  8. Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    CAS  Article  Google Scholar 

  9. Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56:190–200

    CAS  Article  Google Scholar 

  10. Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232

    CAS  Article  Google Scholar 

  11. Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    CAS  Article  Google Scholar 

  12. Killham K (1985) A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ Pollut A 38:283–294

    CAS  Article  Google Scholar 

  13. Land KM (2002) Bacteria–fungi interactions: pathogenesis meets ecology. Trends Microbiol 10:397–398

    CAS  Article  Google Scholar 

  14. Muhammad A, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514

    CAS  Article  Google Scholar 

  15. Nayak B, Nair KM (2003) In vitro bioavailability of iron from wheat flour fortified with ascorbic acid, EDTA and sodium hexametaphosphate, with or without iron. Food Chem 80:545–550

    CAS  Article  Google Scholar 

  16. Nealson HK (1983) The microbial iron cycle. In: Krumbeln WE (ed) Microbial geochemistry. Inc., Blackwell Scientific Publications, Oxford, pp 159–183

    Google Scholar 

  17. Newman DK, Banfield JF (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296:1071–1077

    CAS  Article  Google Scholar 

  18. Nuñez L, Barros N, Barja I (1994) A kinetic analysis of the degradation of glucose by soil microorganisms studied by microcalorimetry. Thermochim Acta 237:73–81

    Article  Google Scholar 

  19. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    CAS  Article  Google Scholar 

  20. Sparling GP (1983) Estimation of microbial biomass and activity in soil using microcalorimetry. J Soil Sci 34:381–390

    CAS  Article  Google Scholar 

  21. Straight PD, Willey JM, Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925

    CAS  Article  Google Scholar 

  22. Vásquez-Murrieta MS, Migueles-Garduño I, Franco-Hernández O, Govaerts B, Dendooven L (2006) C and N mineralization and microbial biomass in heavy-metal contaminated soil. Eur J Soil Biol 42:89–98

    Article  Google Scholar 

  23. Wang F, Yao J, Chen H, Zhou Y, Chen Y, Chen H, Gai N, Zhuang R, Tian L, Maskow T, Ceccanti B, Trebse P, Zaray G (2009) Microcalorimetric measurements of the microbial activities of single- and mixed-species with trivalent iron in soil. Ecotoxicol Environ Saf 72:128–135

    CAS  Article  Google Scholar 

  24. Weaver VB, Kolter R (2004) Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 186:2376–2384

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Grants from the International Joint Key Project from Chinese Ministry of Science and Technology (2010DFB23160), International Joint Key Project from National Natural Science Foundation of China (40920134003), National Natural Science Foundation of China (41103060, 41273092), National Outstanding Youth Research Foundation of China (40925010), and the Fundamental Research Funds for the Central Universities (FRF-TP-12-005A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, F., Yao, J., Yu, C. et al. Investigating Pseudomonas putidaCandida humicola Interactions as Affected by Chelate Fe(III) in Soil. Bull Environ Contam Toxicol 92, 358–363 (2014). https://doi.org/10.1007/s00128-013-1163-8

Download citation

Keywords

  • Microcalorimetry
  • Microbial activity
  • Toxic effect
  • Trivalent iron
  • Bacterial-fungal interaction