Skip to main content

Assessment of Toxicity and Potential Risk of Butene-fipronil Using Drosophila melanogaster, in Comparison to Nine Conventional Insecticides

Abstract

The toxicities of butene-fipronil to Drosophila melanogaster were evaluated, in comparison to nine conventional insecticides. According to the mean LD50 values of the larvae from CS, w 1118 and Oregan strains, butene-fipronil, abamectin, spinosad and chlorpyrifos exhibited high levels of toxicity. Imidacloprid, α-cypermethrin and clothianidin showed middle levels of toxicity. And acephate, methomyl and acetamiprid had low levels of toxicity. To the adults, butene-fipronil, α-cypermethrin, spinosad, and chlorpyrifos were relatively more toxic, whereas acephate, methomyl, acetamiprid, imidacloprid, clothianidin and abamectin were relatively less toxic. Butene-fipronil and abamectin were more toxic to larvae. In contrast, spinosad, α-cypermethrin, and clothianidin were more toxic to adults. Moreover, the toxic risk assessment using a risk quotient value revealed that butene-fipronil was safe to D. melanogaster adults. Thus, our results suggested that butene-fipronil is harmful to D. melanogaster larvae, but it is relatively safe to the adults.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Article  Google Scholar 

  2. Altun D, Uysal H, Aşkın H, Ayar A (2011) Determination of the effects of genistein on the longevity of Drosophila melanogaster Meigen (Diptera; Drosophilidae). Bull Environ Contam Toxicol 86:120–123. doi:10.1007/s00128-010-0159-x

    CAS  Article  Google Scholar 

  3. Babczyńska A, Migula P (2002) Cadmium-fenitrothion interaction in the spider Pardosa lugubris and the fruit fly Drosophila melanogaster. Bull Environ Contam Toxicol 69:586–592. doi:10.1007/s00128-002-0101-y

    Article  Google Scholar 

  4. Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Ann Rev Entomol 58:99–117

    CAS  Article  Google Scholar 

  5. Goldstein S, Babich H (1989) Differential effects of arsenite and arsenale to Drosophila melanogaster in a combined adult/developmental toxicity assay. Bull Environ Contam Toxicol 42:276–282

    CAS  Article  Google Scholar 

  6. Grant R (2002) Simple solid dose bioassay for insecticides using the fruit fly (Drosophila melanogaster). Bull Environ Contam Toxicol 69:35–40. doi:10.1007/s00128-002-0006-9

    CAS  Article  Google Scholar 

  7. Hainzl D, Casida JE (1996) Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proc Natl Acad Sci USA 93:12764–12767

    CAS  Article  Google Scholar 

  8. Karataş A, Bahçeci Z (2009) Effect of cypermethrin on some developmental stages of Drosophila melanogaster. Bull Environ Contam Toxicol 82:738–742. doi:10.1007/s00128-008-9604-5

    Article  Google Scholar 

  9. Liu S, Niu H, Xiao T, Xue C, Liu Z, Luo W (2009) Does phenoloxidase contributed to the resistance? Selection with butane-fipronil enhanced its activities from diamondback moths. Open Biochem J 3:9–13

    CAS  Article  Google Scholar 

  10. Mutlu AG (2012) Increase in mitochondrial DNA copy number in response to ochratoxin A and methanol-induced mitochondrial DNA damage in Drosophila. Bull Environ Contam Toxicol 89:1129–1132. doi:10.1007/s00128-012-0826-1

    CAS  Article  Google Scholar 

  11. Niu H-T, Luo W-C, Zong J-P, Wei S-J, Wang H-Y, Pan Z-X (2008) Realized heritability of resistance to butene-fipronil in diamondback moth, Plutella xylostella. Acta Phytophylacica Sinica 35:165–168

    Google Scholar 

  12. Ouchi R, Manzato A, Ceron C, Bonilla-Rodriguez G (2007) Evaluation of the effects of a single exposure to ethidium bromide in Drosophila melanogaster (Diptera-Drosophilidae). Bull Environ Contam Toxicol 78:489–493. doi:10.1007/s00128-007-9208-5

    CAS  Article  Google Scholar 

  13. Peterson RKD (2006) Comparing ecological risks of pesticides: the utility of a risk quotient ranking approach across refinements of exposure. Pest Manag Sci 62:46–56. doi:10.1002/ps.1126

    CAS  Article  Google Scholar 

  14. Preetha G, Stanley J, Suresh S, Samiyappan R (2010) Risk assessment of insecticides used in rice onmiridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal). Chemosphere 80:498–503

    CAS  Article  Google Scholar 

  15. Scharf ME, Nguyen SN, Song C (2006) Evaluation of volatile low molecular weight insecticides using Drosophila melanogaster as a model. Pest Manag Sci 62:655–663. doi:10.1002/ps.1222

    CAS  Article  Google Scholar 

  16. Schleier JJ III, Peterson RK (2010) Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management. Ecotoxicology 19:1140–1146. doi:10.1007/s10646-010-0497-9

    CAS  Article  Google Scholar 

  17. Shayela S, Hathi H, Rao C (1988) Toxicity of sodium dichloro S-triazinetrione to Drosophila melanogaster. Bull Environ Contam Toxicol 41:108–113

    CAS  Article  Google Scholar 

  18. Uysal H, Kaya Y (2004) Toxicity of Euphorbia canariensis latex to some developmental stages of Drosophila melanogaster (Diptera: Drosophilidae). Bull Environ Contam Toxicol 72:45–53. doi:10.1007/s00128-003-0239-2

    CAS  Article  Google Scholar 

  19. Wang Y, Yu R, Zhao X, Chen L, Wu C, Cang T, Wang Q (2012a) Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae) to selected insecticides with different modes of action. Crop Prot 34:76–82. doi:10.1016/j.cropro.2011.12.007

    Article  Google Scholar 

  20. Wang Y, Chen L, Yu R, Zhao X, Wu C, Cang T, Wang Q (2012b) Insecticide toxic effects on Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Pest Manag Sci 68:1564–1571. doi:10.1002/ps.3343

    CAS  Article  Google Scholar 

  21. Wang S-P, He G-L, Chen R–R, Li F, Li G-Q (2012c) The involvement of cytochrome P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae. Arch Insect Biochem Physiol 79:264–275. doi:10.1002/arch.21021

    CAS  Article  Google Scholar 

  22. Wang Y, Chen L, An X, Jiang J, Wang Q, Cai L, Zhao X (2013) Susceptibility to selected insecticides and risk assessment in the insect egg parasitoid Trichogramma confusum (Hymenoptera: Trichogrammatidae). J Econ Entomol 106:142–149

    CAS  Article  Google Scholar 

  23. Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM, Letherer TJ, Mitchell JC (2010) A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. Insect Biochem Mol Biol 40:376–384. doi:10.1016/j.ibmb.2009.11.004

    CAS  Article  Google Scholar 

  24. Yeşilada E (1999) Genotoxic activity of vinasse and its effect on fecundity and longevity of Drosophila melanogaster. Bull Environ Contam Toxicol 63:560–566. doi:10.1007/s001289901017

    Article  Google Scholar 

  25. Yu R-X, Wang Y-H, Wu C-X, Cang T, Chen L-P, Wu S-G, Zhao X-P (2012) Acute toxicity and risk assessment of butene-fipronil to silkworm, Bombyx mori. Asian J Ecotoxicol 7:639–645

    CAS  Google Scholar 

  26. Yuan Z-J, Wang X-T, Hao X-M, Lai Z-W, Deng X-P (2009) Formulation development of butene-fipronil 20% WG. Agrochem Res Appl 13:14–17

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program, No. 2010CB126200).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-Qing Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arain, M.S., Hu, XX. & Li, GQ. Assessment of Toxicity and Potential Risk of Butene-fipronil Using Drosophila melanogaster, in Comparison to Nine Conventional Insecticides. Bull Environ Contam Toxicol 92, 190–195 (2014). https://doi.org/10.1007/s00128-013-1155-8

Download citation

Keywords

  • Butene-fipronil
  • Drosophila
  • Toxicity
  • Risk assessment