Skip to main content

A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L.

Abstract

Aquatic macrophytes have tremendous potential for remediation of the heavy metal cadmium. The objective of this study was to investigate Cd phytoremediation ability of water lettuce, Pistia stratiotes L. The study was conducted with 5, 10, 15 and 20 mg L−1 CdCl2 in hydroponic system for 21 days and the Cd concentrations in the root and shoot tissues were estimated by atomic absorption spectroscopy. The values obtained were used to evaluate the bioconcentration factor (BCF), translocation factor (TF) and translocation efficiency of this plant. The plant showed high Cd tolerance of up to 20 mg L−1 but there was a general trend of decline in the root and shoot biomass. The maximum BCF values for root and shoot tissues were 2,294 and 870 respectively, obtained for 5 mg L−1 Cd, which indicated that the plant was a Cd hyperaccumulator. The TF maxima was found to be 0.6 and as much as 60 % root to shoot translocation efficiency was observed for 15 mg L−1 Cd which points towards the suitability of water lettuce for removing Cd from surface waters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alcántara E, Romera FJ, Cañete M, De la Huardia MI (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  Google Scholar 

  2. APHA (1992) Standard methods for the examination of water and wastewater, vol 14. American Public Health Association–AWWA–WPCF, Washington DC, p 1020

    Google Scholar 

  3. ATSDR (2011) CERCLA priority list of hazardous substances, agency for toxic substances and disease control (Online), available URL: http://www.atsdr.cdc.gov/spl/index.html Accessed on 2 Oct 2012

  4. Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Article  Google Scholar 

  5. Barcelo J, Poschenrieder CH, Vazquez MD, Gunse B (1993) Beneficial and toxic effects of chromium in plants: solution culture, pot and field studies in environmental contamination. In: Vernet JP (ed) Studies in Environmental Sciences. Elsevier, Amsterdam, pp 147–171

    Google Scholar 

  6. Bunluesin S, Kruatrachue M, Pokethitiyook P, Lanza GR, Upatham ES, Soonthornsarathool V (2004) Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bull Environ Contam Toxicol 73:591–598

    CAS  Google Scholar 

  7. Chaney RL, Brown S, Li YM, Angle JS, Homer F, Green C (1995) Potential use of metal hyperaccumulators. Min Environ Manage 3:9–11

    Google Scholar 

  8. De Souza M, Zhu Y, Zayed A, Quian J, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II water hyacinth. J Environ Qual 28:339–344

    Google Scholar 

  9. Franzin WG, McFarlane GA (1980) An analysis of the aquatic macrophytes, Myriophylhum exalbescens, as an indicator of metal contamination of aquatic ecosystems near a base metal smelter. Bull Environ Contam Toxicol 24:597–605

    CAS  Article  Google Scholar 

  10. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    CAS  Article  Google Scholar 

  11. Ha NTH, Sakakibara M, Sano S (2011) Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102:2228–2234

    Article  Google Scholar 

  12. He ZL, Yang XE, Stoffela PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  Article  Google Scholar 

  13. Jain SK, Vasudevan P, Jha N (1990) Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Wat Res 24:177–183

    CAS  Article  Google Scholar 

  14. Kabata-Pendias A (2001) Trace Elements in Soils and Plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  15. Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  Google Scholar 

  16. Leita L, De Nobili M, Mondini C, Baca Garcıá MT (1993) Response of Leguminosae to cadmium exposure. J Plant Nut 16:2001–2012

    CAS  Article  Google Scholar 

  17. Liu J, Dong Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953

    CAS  Article  Google Scholar 

  18. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on calcium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    CAS  Article  Google Scholar 

  19. Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30:93–103

    CAS  Article  Google Scholar 

  20. Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang XE (2010) Phytoremediation to remove nutrients and improve eutrophic storm waters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96

    CAS  Article  Google Scholar 

  21. Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang XE (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18:978–986

    CAS  Article  Google Scholar 

  22. Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1

    CAS  Article  Google Scholar 

  23. Marchiol L, Leita L, Martin M, Peressotti A, Zeri G (1996) Physiological responses of two soyabean cultivars to cadmium. J Environ Qual 25:562–566

    CAS  Article  Google Scholar 

  24. Miller GE, Wile I, Hitchin GG (1983) Patterns of accumulation of selected metals in numbers of the soft water macrophyte flora of central Ontario lakes. Aquat Bot 15:53–64

    Article  Google Scholar 

  25. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    CAS  Article  Google Scholar 

  26. Muramoto S, Oki Y (1983) Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull Environ Contam Toxicol 30:170–177

    CAS  Article  Google Scholar 

  27. Nakada M, Fukaya K, Takeshita S, Wada Y (1979) The accumulation of heavy metals in the submerged plant (Elodea nuttallii). Bull Environ Contam Toxicol 22:21–27

    CAS  Article  Google Scholar 

  28. Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392:22–29

    CAS  Article  Google Scholar 

  29. Pilon-Smits EAH, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210

    Article  Google Scholar 

  30. Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 93:285–321

    Google Scholar 

  31. Qureshi MI, D’Amici GM, Fagioni M, Rinalducci S, Zolla L (2010) Iron stabilizes thylakoid protein–pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J Plant Physiol 167:761–770

    CAS  Article  Google Scholar 

  32. Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160

    CAS  Article  Google Scholar 

  33. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment. John Wiley and Sons, New York, pp 193–230

    Google Scholar 

  34. Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 4:105–130

    Article  Google Scholar 

  35. Sárvári E, Fodor F, Cseh E, Varga A, Záray G, Zolla L (1999) Relationship between changes in ion content of leaves and chlorophyll–protein composition in cucumber under Cd and Pb stress. Z Naturforsch C 54:746–753

    Article  Google Scholar 

  36. Sela M, Gary J, Tel-Or E (1989) Accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol 112:7–12

    CAS  Article  Google Scholar 

  37. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation an overview of metallic ion decontamination from soil. Appl Microbiol Biot 61:405–412

    CAS  Article  Google Scholar 

  38. Sinha S, Chandra P (1990) Removal of Cu and Cd from water by Bacopa monnieri L. Water Air Soil Poll 51:271–276

    CAS  Google Scholar 

  39. Sivaci ER, Sivaci A, Sokmen M (2004) Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56:1043–1048

    Article  Google Scholar 

  40. Wang Q, Cui Y, Dong Y (2002) Phytoremediation of polluted waters: potentials and prospects of wetland plants. Acta Biotechnol 22:199–208

    CAS  Article  Google Scholar 

  41. Zayed A, Gowthaman S, Terry N (1998) Phytoremediation of trace elements by wetland plants: 1 Duckweed. J Environ Qual 27:715–721

    CAS  Article  Google Scholar 

  42. Zhu YL, Zayed AM, Qian JH, Souza MD, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II Water hyacinth. J Environ Qual 28:339–344

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and the Assam University authority for their support.

Conflict of interest

The authors declare that they have no conflict of interest and all the experiments in this study comply with the current laws of India and have recommendation of Assam University Ethical Board.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suchismita Das.

Additional information

Suchismita Das and Sunayana Goswami have contributed equally towards the paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Das, S., Goswami, S. & Talukdar, A.D. A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L.. Bull Environ Contam Toxicol 92, 169–174 (2014). https://doi.org/10.1007/s00128-013-1152-y

Download citation

Keywords

  • Heavy metal
  • Extraction
  • Plant
  • Hyperaccumulator
  • Water