Skip to main content
Log in

Bioavailability Assessment of Metals from a Nickel Mining Residue in the Gastrointestinal Tract of Oreochromis niloticus In Vivo

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mining to obtain ferronickel by the pyrometallurgical process involves a calcination stage that generates a highly metallic solid dust. This study evaluated the bioavailability of metals from calcination dust after being ingested by Oreochromis niloticus. Chemical analysis was performed on the whole body and histological analysis was performed on the gills and gastrointestinal tract of fish to evaluate potential bioaccumulation. After 96 h of exposure to the dust, gill tissue contained a small amount of particulate matter, while the gastrointestinal tract was filled with the material, generating high values of metals in the fish whole body chemical analysis. However, after 15 and 30 days in clean water, both the gills and gastrointestinal tract were nearly devoid of particles and metal concentrations in the fish whole body had largely returned to baseline levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • BNDES (2008) BNDES aprova financiamento de R$ 1,4 bilhão para produção de níquel. Available from http://www.bndes.gov.br/noticias/2008/not205_08.asp. Accessed 15 June 2009

  • Brazil (1965) Decreto No. 55871, de 26 de março de 1965. Modifica o Decreto No. 50040 referente a normas reguladoras do emprego de aditivos para alimentos. Available from http://www.planalto.gov.br/ccivil_03/decreto/1950-1969/D55871.htm Accessed 25 May 2013

  • Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood APM (ed) Effects of pollutants on aquatic organisms. Cambridge University Press, Cambridge, pp 7–34

    Google Scholar 

  • Burton GA (1991) Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10:1585–1627

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    CAS  Google Scholar 

  • Clearwater SJ, Farag AM, Meyer JS (2002) Bioavailability and toxicity of dietborne copper and zinc to fish. Comp Biochem Physiol C Toxicol Pharmacol 132:269–313

    Article  Google Scholar 

  • Connell DW (1997) Basic concepts of environmental chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Denny P, Bailey R, Tukahirwa E, Mafabi P (1995) Heavy metal contamination of Lake George (Uganda) and its wetlands. Hydrobiologia 297:229–239

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) Multifunctional fish gill: dominant site gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • FAO/WHO (2011) Working document for information and use in discussions related to contaminants and toxins in the GSCTFF. CF/5 INF/1, Mar 2011

  • Gupta CK (2002) Chemical metallurgy: principles and practice. Wiley, Weinhein

    Google Scholar 

  • Haroon AKY, Pittman KA, Blom G (1998) Diel feeding pattern and ration of two sizes of tilapia, Oreochromis spp. in pond and paddy field. Asian Fish Sci 10:281–301

    Google Scholar 

  • Lottermoser BG (2007) Mine wastes: characterization, treatment and environmental impacts. Springer, Berlin

    Google Scholar 

  • Low KH, Zain SM, Abas MR (2011) Evaluation of metal concentrations in red tilapia (Oreochromis spp) from three sampling sites in Jelebu, Malaysia using principal component analysis. Food Anal Methods 4:276–285

    Article  Google Scholar 

  • Luoma SN (1983) Bioavailability of trace metals to aquatic organisms—a review. Sci Total Environ 28:1–22

    Article  CAS  Google Scholar 

  • Meurer F, Hayashi C, Boscolo WR (2003) Digestibilidade aparente de alguns alimentos protéicos pela Tilápia do Nilo (Oreochromis niloticus). Rev Bras Zootec 32:1801–1809

    Article  Google Scholar 

  • Ojo AA, Wood CM (2007) In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 83:10–23

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Muniz DHF, Ferreira MFN, Grisolia CK (2010) Evaluation of acute toxicity, cytotoxicity and genotoxicity of a nickel mining waste to Oreochromis niloticus. Bull Environ Contam Toxicol 85:467–471

    Article  CAS  Google Scholar 

  • Schlekat CE, Decho AW, Chandler GT (2000) Bioavailability of particle associated silver, cadmium and zinc to the estuarine amphipod Leptocheirus plumulosus through dietary ingestion. Limnol Oceanogr 45:11–21

    Article  CAS  Google Scholar 

  • Smith BJ, Smith SA, Tengjaroenkul B, Lawrence TA (2000) Gross morphology and topography of the adult intestinal tract of the tilapian fish, Oreochromis niloticus L. Cells Tissues Organs 166:294–303

    Article  CAS  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CT-Mineral CNPq of the Brazilian Ministry of Science and Technology (Project No. 409997/2006-4) and SEG-Embrapa for financial support. Laís de Souza Lima received a fellowship from UniCEUB/PIBIC/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cyrino Oliveira-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira-Filho, E.C., Lima, L.S., Muniz, D.H.d. et al. Bioavailability Assessment of Metals from a Nickel Mining Residue in the Gastrointestinal Tract of Oreochromis niloticus In Vivo. Bull Environ Contam Toxicol 91, 533–538 (2013). https://doi.org/10.1007/s00128-013-1085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-013-1085-5

Keywords

Navigation