Skip to main content

The Effects of Three Selected Endocrine Disrupting Chemicals on the Fecundity of Fruit Fly, Drosophila melanogaster

Abstract

Bisphenol A (BPA), 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-tert-OP) are the endocrine disrupting chemicals (EDCs) that has been shown to exert both toxic and biological effects on living organisms. The present study investigated effects of environmentally relevant concentrations of BPA, 4-NP and 4-tert-OP (0.1, 1 and 10 mg/L) on the fecundity of fruit fly Drosophila melanogaster. In the all exposure groups of BPA, 4-NP and 4-tert-OP, it was found a statistically significant decrease in mean fecundity as compared to the control groups (p < 0.05).

This is a preview of subscription content, access via your institution.

References

  1. Ashburner M (1989) Drosophila a laboratory handbook. New York Press, Cold Harbor Spring

    Google Scholar 

  2. Atlı E, Ünlü H (2007) The effects of microwave frequency electromagnetic fields on the fecundity of Drosophila melanogaster. Turkish J Biol 31:1–5

    Google Scholar 

  3. Atlı E, Ünlü H (2008) Bisfenol A’nın Drosophila melanogaster’in canlı kalma oranı üzerine olan etkisi. Poster session presented at: XIX. National Biology Congress, Karadeniz Technical University, Turkey

  4. Atlı E, Ünlü H (2009) Akut nonilfenol uygulamasının Drosophila melanogaster’in gelişimi üzerine toksik etkisinin incelenmesi. Poster session presented at: 7th congress of the Turkish society of toxicology, METU, Turkey

  5. Baldwin WS, Graham SE, Shea D, LeBlanc GA (1997) Metabolic androgenization of female Daphnia magna by the xenoestrogen 4-nonylphenol. Environ Toxicol Chem 16:1905–1911

    CAS  Article  Google Scholar 

  6. Bettinetti R, Provini A (2002) Toxicity of 4-nonylphenol to Tubifex tubifex and Chironomus riparius in 28-Day Whole Sediment Tests. Ecotox Environ Saf 53:113–121

    CAS  Article  Google Scholar 

  7. Cakal Arslan O, Parlak H (2007) Embryotoxic effects of nonylphenol and octylphenol in sea urchin Arbacia lixula. Ecotoxicology 16(6):439–444

    CAS  Article  Google Scholar 

  8. Comber MHI, Williams TD, Stewart KM (1993) Effects of nonylphenol on Daphnia magna. Water Res 27:273–276

    CAS  Article  Google Scholar 

  9. deFur PL, Crane M, Ingersoll C, Tattersfield L (1999) Endocrine disruption in invertebrates: Endocrinology, testing, and assessment. In: Proceedings of the workshops on endocrine disruption in invertebrates. SETAC Press, The Netherlands. Pensacola, FL

  10. Forbes VE, Warbritton R, Aufderheide J, Van Der Hoeven N, Caspers N (2008) Effects of bisphenol a on fecundity, egg hatchability, and juvenile growth of Marisa cornuarıetis. Environ Toxicol Chem 27(11):2332–2340

    CAS  Article  Google Scholar 

  11. Forget-Leray J, Landriau I, Minier C, Leboulenger F (2005) Impact of endocrine toxicants on survival, development, and reproduction of the esturine copepod Eurytemora affinis. Ecotoxicol Environ Saf 60:288–294

    CAS  Article  Google Scholar 

  12. Fukuhori N, Kitano M, Kimura H (2005) Toxic effects of bisphenol A on sexual and asexual reproduction in Hydra oligactis. Arch Environ Contam Toxicol 48:495–500

    CAS  Article  Google Scholar 

  13. Kahl MD, Makynen EA, Kosian PA, Ankley GT (1997) Toxicity of 4-nonylphenol in a life-cycle test with the midge Chironomus tentans. Ecotoxicol Environ Saf 38:155–160

    CAS  Article  Google Scholar 

  14. Krebs RA, Feder ME (1998) Hsp 70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? J Insect Physiol 44:1091–1101

    CAS  Article  Google Scholar 

  15. Krebs RA, Loeschcke V (1994) Response to environmental change: Genetic variation and fitness in Drosophila buzzatii following temperature stress. In: Loeschcke V, Tomiuk J, Jain SK (eds) Conservation Genetics. Birkauser, Basel, pp 309–321

    Chapter  Google Scholar 

  16. Lemos MFL, Van Gestel CAM, Soares AMVM (2010) Reproductive toxicity of the endocrine disrupters vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille 1804). Chemosphere 78:907–913

    CAS  Article  Google Scholar 

  17. Marcial HS, Hagiwara A, Snell TW (2003) Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ Toxicol Chem 22(12):3025–3030

    CAS  Article  Google Scholar 

  18. Mihaich EM, Friederich U, Carpers N, Hall AT, Klecka GM, Dimond SS, Staples CA, Ortego LS, Hentges SG (2009) Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    CAS  Article  Google Scholar 

  19. Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14:291–299

    CAS  Article  Google Scholar 

  20. Obata T, Kubota S (2000) Formation of hydroxyl radicals by environmental estrogen-like chemicals in rat striatum. Neurosci Lett 296:41–44

    CAS  Article  Google Scholar 

  21. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine distruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383–397

    CAS  Article  Google Scholar 

  22. Preston BL, Snell TW, Robetson TL, Dingmann BJ (2000) Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disrupters. Environ Toxicol Chem 19:2923–2928

    CAS  Article  Google Scholar 

  23. Pyza E, Mak P, Kramarz P, Laskowski R (1997) Heat shock proteins (hsp70) as biomarkers in ecotoxicological studies. Ecotoxicol Environ Saf 38:244–251

    CAS  Article  Google Scholar 

  24. Rauschenbach IY, Sukhanova MZ, Hirashima A, Sutsugu E, Kuano E (2000) Role of ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady Biol Sci 375:641–643

    CAS  Article  Google Scholar 

  25. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125

    CAS  Article  Google Scholar 

  26. Rhee JS, Raisuddin S, Lee KW, Seo JS, Ki JS, Kim IC, Park HG, Lee JS (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol 149:104–112

    Google Scholar 

  27. Roy D, Palangt M, Chen CW, Thomas RD, Colerangle J, Atkinson A, Yan ZJ (1997) Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. J Toxicol Environ Health 50:1–29

    CAS  Article  Google Scholar 

  28. Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schafers C, Vandenbergh GF, Watts M, Wenzel A (2003) Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA Project. Ecotoxicol Environ Saf 54:302–314

    CAS  Article  Google Scholar 

  29. Shurin JB, Dodson SI (1997) Sublethal toxic effects of cyanobacteria and nonylphenol on environmental sex determination and development in Daphnia. Environ Toxicol Chem 16(6):1269–1276

    CAS  Article  Google Scholar 

  30. Snyder MJ, Mulder EP (2001) Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure. Aqua Toxicol 55:177–190

    CAS  Article  Google Scholar 

  31. Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 65(1–6):143–150

    CAS  Article  Google Scholar 

  32. Widarto TH, Krogh PH, Forbes VE (2007) Nonylphenol stimulates fecundity but not population growth rate (λ) of Folsomia candida. Ecotoxicol Environ Saf 67:369–377

    CAS  Article  Google Scholar 

  33. Xu LC, Sun H, Chen JF, Bian Q, Qian J, Song L, Wang XR (2005) Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology 216:197–203

    CAS  Article  Google Scholar 

  34. Yesilada E (1999) Genotoxic activity of vinasse and its effect on fecundity and longevity of Drosophila melanogaster. Bull Environ Contam Toxicol 63:560–566

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank The Scientific & Technological Researh Council of Turkey (TUBITAK) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emel Atli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atli, E. The Effects of Three Selected Endocrine Disrupting Chemicals on the Fecundity of Fruit Fly, Drosophila melanogaster . Bull Environ Contam Toxicol 91, 433–437 (2013). https://doi.org/10.1007/s00128-013-1083-7

Download citation

Keywords

  • Drosophila melanogaster
  • Bisphenol A
  • 4-nonylphenol
  • 4-tert-octylphenol
  • Fecundity