Skip to main content

Destructive Adsorption of Diazinon Pesticide by Activated Carbon Nanofibers Containing Al2O3 and MgO Nanoparticles

Abstract

We report the destructive adsorption of Diazinon pesticide by porous webs of activated carbon nanofibers containing Al2O3 and MgO nanoparticles. The results show that, the presence of Al2O3 and MgO nanoparticles in the activated carbon nanofibers increases the amount of destructively adsorbed Diazinon pesticide by activated carbon nanofibers. Moreover, type, amount, and specific surface area of metal oxide nanoparticles affect the adsorption rate as well as the total destructively adsorbed Diazinon. Liquid chromatography proved the degradation of Diazinon by chemical reaction with Al2O3 and MgO nanoparticles. Liquid chromatography–mass spectrometry showed that the main product of reaction between Diazinon and the metal oxides is 2-isopropyl-6-methyl-4-pyrimidinol with less toxicity than Diazinon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Armaghan M, Amini M (2009) Adsorption of diazinon and fenitothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent. Colloid J 71(5):583–588

    CAS  Article  Google Scholar 

  2. Armaghan M, Amini M (2010) Absorption of diazinon and fenitrothion pesticides by nano-size alumina and magnesia prepared by sol–gel method. In: Proceedings of the 3rd conference on nanostructures, Kish Island, I.R. Iran, pp 21–23

  3. Ayranci E, Hoda N (2005) Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60(11):1600–1607

    CAS  Article  Google Scholar 

  4. Čolović M, Krstić D, Petrović S, Leskovac A, Joksić G, Savić J, Franko M, Trebše P, Vasić V (2010) Toxic effects of diazinon and its photodegradation products. Toxicol Lett 193(1):9–18

    Article  Google Scholar 

  5. Dadvar S, Tavanai H, Morshed M (2012a) Effect of embedding MgO and Al2O3 nanoparticles in the precursor on the pore characteristics of PAN based activated carbon nanofibers. J Anal Appl Pyrol 98:98–105

    CAS  Article  Google Scholar 

  6. Dadvar S, Tavanai H, Morshed M, Ghiaci M (2012b) The removal of 2-chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles. J Chem Eng Data 57(5):1456–1462

    CAS  Article  Google Scholar 

  7. Dixit V, Tewari JC, Obendorf SK (2009) Identification of degraded products of aldicarb due to the catalytic behavior of titanium dioxide/polyacrylonitrile nanofiber. J Chromatogr A 1216(36):6394–6399

    CAS  Article  Google Scholar 

  8. Dwivedi RK, Gowda G (1985) Thermal stability of aluminium oxides prepared from gel. J Mater Sci Lett 4(3):331–334

    CAS  Article  Google Scholar 

  9. Fei X, Sun G (2009) Oxidative degradation of organophosphorous pesticides by N-halamine fabrics. Ind Eng Chem Res 48(12):5604–5609

    CAS  Article  Google Scholar 

  10. Jusoh A, Hartini WJH, Na A, Endut A (2011) Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresource Technol 102(9):5312–5318

    CAS  Article  Google Scholar 

  11. Lange L, Obendorf S (2012) Effect of plasma etching on destructive adsorption properties of polypropylene fibers containing magnesium oxide nanoparticles. Arch Environ Con and Tox 62(2):185–194

    CAS  Article  Google Scholar 

  12. Marsh H, Rodríguez-Reinoso F (2006) Activated carbon, 1st edn. Elsevier, Oxford

    Google Scholar 

  13. Martin ME, Narske RM, Klabunde KJ (2005) Mesoporous metal oxides formed by aggregation of nanocrystals. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide. Micropor Mesopor Mater 83(1–3):47–50

    CAS  Article  Google Scholar 

  14. Nair AS, Pradeep T (2007) Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J Nanosci Nanotechnol 7(6):1871–1877

    CAS  Article  Google Scholar 

  15. Nowak J, Carter C (2009) Forming contacts and grain boundaries between MgO nanoparticles. J Mater Sci 44(9):2408–2418

    CAS  Article  Google Scholar 

  16. Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem Eur J 8(11):2602–2607

    CAS  Article  Google Scholar 

  17. Shemer H, Linden KG (2006) Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment. J Hazard Mater 136(3):553–559

    CAS  Article  Google Scholar 

  18. Shukla OP (1998) Pesticides, man and biosphere. APH Publ. Corp, New Delhi

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavanai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behnam, R., Morshed, M., Tavanai, H. et al. Destructive Adsorption of Diazinon Pesticide by Activated Carbon Nanofibers Containing Al2O3 and MgO Nanoparticles. Bull Environ Contam Toxicol 91, 475–480 (2013). https://doi.org/10.1007/s00128-013-1064-x

Download citation

Keywords

  • Pesticide
  • Diazinon
  • Adsorption
  • Activated carbon nanofibers
  • Al2O3 and MgO nanoparticles