Skip to main content
Log in

Sub-acute Deltamethrin and Fluoride Toxicity Induced Hepatic Oxidative Stress and Biochemical Alterations in Rats

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The current study investigated the effects of deltamethrin, fluoride (F) and their combination on the hepatic oxidative stress and consequent alterations in blood biochemical markers of hepatic damage in rats. Significant hepatic oxidative stress and hepatic damage were observed in the toxicant exposed groups. These changes were higher in the deltamethrin-F co-exposure treatment group, depicting a positive interaction between the two chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:RA141–RA147

    CAS  Google Scholar 

  • Adebayo OL, Adenuga GA (2012) Biochemical changes in the liver and pancreas of well-fed and protein undernourished rats following fluoride administration. Asian J Appl Sci 5:215–223

    Article  CAS  Google Scholar 

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 276–286

    Google Scholar 

  • Birkner E, Grucka-Mamczar E, Zwirska-Korczala K, Zalejska-Fiolka J, Stawiarska-Pieta B, Kasperczyk S, Kasperczyk A (2006) Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats. Biol Trace Elem Res 109:35–48

    Article  CAS  Google Scholar 

  • Clampitt RB, Hart RJ (1978) The tissue activities of some diagnostic enzymes in ten mammalian species. J Comp Pathol 88:607–621

    Article  CAS  Google Scholar 

  • Drotman RB, Lawhorn GT (1978) Serum enzymes as indicators of chemically induced liver damage. Drug Chem Toxicol 1:163–171

    Article  CAS  Google Scholar 

  • Dubey N, Raina R, Khan AM (2012) Toxic effects of deltamethrin and fluoride on antioxidant parameters in rats. Fluoride 45:242–246

    Google Scholar 

  • Duncan DB (1995) Multiple range and multiple F-tests. Biometrics 11:1–14

    Article  Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking water. IWA Publishing, London

    Google Scholar 

  • Grewal G, Verma PK, Dhar VJ, Srivastava AK (2009) Toxicity of sub-acute oral administration of cyperthrin in rats with special reference to histopathological changes. Int J Green Pharm 3:293–299

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Gultathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hanen B, Sabeur K, Kamel J, Tahia B, Fatma A, Feriel E, Najiba Z (2006) Effects of sodium fluoride on the hepatic toxicity in adult mice and their suckling pups. Pestic Biochem Physiol 86:124–130

    Article  Google Scholar 

  • Hassan HA, Yousef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food Chem Toxicol 47:2332–2337

    Article  CAS  Google Scholar 

  • Hertwig B, Steb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  CAS  Google Scholar 

  • Ho LN, Ishihara T, Ueshima S, Nishiguchi H, Takita Y (2004) Removal of fluoride from water through ion exchange by mesoporous Ti oxohydroxide. J Colloid Interface Sci 272:399–403

    Article  CAS  Google Scholar 

  • Hussain S, Khan MZ, Khan A, Javed I, Asi MR (2009) Toxicopathological effects in rats induced by concurrent exposure to aflatoxin and cypermethrin. Toxicon 53:33–41

    Article  CAS  Google Scholar 

  • Jacob RA, Burri BJ (1996) Oxidative damage and defense. Am J Clin Nutr 63:985–990

    Google Scholar 

  • Krinsky NI (1992) Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 200:248–254

    Article  CAS  Google Scholar 

  • Krook L, Minor RR (1998) Fluoride and alkaline phosphatase. Fluoride 31:177–182

    CAS  Google Scholar 

  • Marklund S, Marklund M (1974) Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay of superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprien). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  • Merian E, Anke M, Ihnar M, Stoeppler M (2004) Elements and their compounds in the environment, volume 3: nonmetals, particular aspects. Wiley-VHC Verlag, Weinheim

    Book  Google Scholar 

  • Mishra A, Dewangan G, Mahajan V, Mandal TK (2012) Effect of flumethrin on tissue biochemistry following oral administration in Wistar albino rats. Int J Pharm Bio Sci 3:191–200

    CAS  Google Scholar 

  • Naveed AP, Venkaeshwarlu P, Janaiah C (2011) Biochemical alteration induced by triazophos in the blood plasma of fish, Channa punctatus (Bloch). Ann Biol Res 2:31–37

    CAS  Google Scholar 

  • Otitoju O, Onwurah INE (2007) Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment. Afr J Biotechnol 6:1455–1459

    CAS  Google Scholar 

  • Raina R, Verma PK, Pankaj NK, Parwez S (2009) Induction of oxidative stress and lipid peroxidation in rats chronically exposed to cypermethrin through dermal application. J Vet Sci 10:257–259

    Article  Google Scholar 

  • Raina R, Verma PK, Pankaj NK, Kant V, Parwez S (2010) Protective role of l-ascorbic acid against cypermethrin-induced oxidative stress and lipid peroxidation in Wistar rats. Toxicol Environ Chem 92:947–953

    Article  CAS  Google Scholar 

  • Ramazotto JL, Carlin R (1978) Effect of DMSO on SGOT during hypothermia adrenalectomized rats. Life Sci 22:329–336

    Article  Google Scholar 

  • Ranjan R, Swarup D, Patra RC (2009) Oxidative stress indices in erythrocytes, liver, and kidneys of fluoride-exposed rabbits. Fluoride 42:88–93

    CAS  Google Scholar 

  • Rehman H, Ali M, Atif F, Kaur M, Bhatia K, Raisuddin S (2006) The modulatory effect of deltamethrin on antioxidants in mice. Clin Chim Acta 369:61–65

    Article  CAS  Google Scholar 

  • Shafiq-Ur-Rehman (1984) Lead-induced regional lipid peroxidation in brain. Toxicol Lett 21:333–337

    Article  CAS  Google Scholar 

  • Shivashankara AR, Shivarajashankara YM, Bhat PG, Rao SH (2002) Lipid peroxidation and antioxidant defence systems in liver of rats in chronic fluoride toxicity. Bull Environ Contam Toxicol 68:612–616

    Article  CAS  Google Scholar 

  • Singh AK, Saxena PN, Sharma HN (2009) Stress induced by beta-cyfluthrin, a type-2 pyrethoid, on brain biochemistry of Albino rat (Rattus norvegicus). Biol Med 1:74–86

    CAS  Google Scholar 

  • Trivedi MH, Verma RJ, Sangai NP, Chinoy NJ (2011) Black tea extract mitigation of NaF-induced lipid peroxidation in different regions of mice brain. Fluoride 44:243–254

    Google Scholar 

  • Tuzmen N, Candan N, Kaya E, Demiryas N (2008) Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochem Funct 26:119–124

    Article  CAS  Google Scholar 

  • Wilhelm J (1990) Metabolic aspects of membrane lipid peroxidation. Acta Univ Carol Med Monogr 137:1–53

    CAS  Google Scholar 

  • Wilson R, Doell BH, Groger W, Hope J, Gattately JB (1970) The physiology of liver enlargement. In: Roe FJC (ed) Metabolic aspects of food safety. Blackwell, Oxford, p 363

    Google Scholar 

  • Yousef MI, Awad TI, Mohamad EH (2006) Deltamethrin induced oxidative damage and biochemical alteration in rats and its attenuation by vitamin E. Toxicology 227:240–247

    Article  CAS  Google Scholar 

  • Zabulyte D, Uleckiene S, Kalibatas J, Paltanaviciene A, Jascaniniene N, Stosik M (2007) Experimental studies on effect of sodium fluoride and nitrate on biochemical parameters in rats. Bull Vet Inst Pulawy 51:79–82

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Mehraj Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, N., Khan, A.M. & Raina, R. Sub-acute Deltamethrin and Fluoride Toxicity Induced Hepatic Oxidative Stress and Biochemical Alterations in Rats. Bull Environ Contam Toxicol 91, 334–338 (2013). https://doi.org/10.1007/s00128-013-1052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-013-1052-1

Keywords

Profiles

  1. Nitin Dubey