Advertisement

Evaluation of DNA Damage in Eurasian Marsh Frogs (Pelophylax ridibundus) by Comet Assay for Determination of Possible Pollution in the Different Lakes in Central Anatolia, Turkey

  • Ugur Cengiz ErismisEmail author
  • İbrahim Hakki Ciğerci
  • Muhsin Konuk
Article

Abstract

In the present study, adult Eurasian marsh frogs, Pelophylax ridibundus, and water samples were collected from a reference lake and three water bodies in central Anatolia, Turkey, to evaluate the water for chemical pollutants and possible effects of pollutants on the DNA of frog erythrocytes by using a comet assay. The results for DNA damage parameters of the comet assay (total comet length, tail intensity, and olive tail moment) and their statistical analysis by ANOVA demonstrated that P. ridibundus and the comet assay together represent an useful approach for the early detection of polluted water bodies.

Keywords

DNA damage Comet assay Eurasian marsh frog Pelophylax ridibundus 

References

  1. Belden LK, Blaustein AR (2002) Population differences in sensitivity to UV-B radiation for larval long-toed salamanders. Ecology 83:1586–1590CrossRefGoogle Scholar
  2. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849CrossRefGoogle Scholar
  3. Dave G, Nilsson E (2005) Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Aquat Toxicol 73:11–30CrossRefGoogle Scholar
  4. Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32CrossRefGoogle Scholar
  5. Diamond JM, Mackler DG, Rasnake WJ, Gruber D (1993) Derivation of site specific ammonia criteria for an effluent-dominated headwater stream. Environ Toxicol Chem 12:649–658CrossRefGoogle Scholar
  6. Dixon DR, Wilson JT (2000) Genetics and marine pollution. Hydrobiologia 420:29–43CrossRefGoogle Scholar
  7. Erismis UC (2011) Abundance, demography and population structure of Pelophylax ridibundus (Anura:Ranidae) in 26-August National Park (Turkey). North–West J Zool 1:5–16Google Scholar
  8. Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59CrossRefGoogle Scholar
  9. Gomez-Mestre I, Tejedo M (2003) Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57:1889–1899Google Scholar
  10. Hatch AC, Blaustein AR (2000) Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (Rana cascadae). Arch Environ Contam Toxicol 39:494–499CrossRefGoogle Scholar
  11. Huang D, Zhang Y, Wang Y, Xie Z, Ji W (2007) Assessment of the genotoxicity in toad Bufo raddei exposed to petrochemical contaminants in Lanzhou Region-China. Mutat Res 629(2):81–88CrossRefGoogle Scholar
  12. Johansson M, Rasanen K, Merilä J (2001) Comparison of nitrate tolerance between different populations of the common frog Rana temporaria. Aquat Toxicol 54:1–14CrossRefGoogle Scholar
  13. Kassie F, Parzefall W, Knasmuller S (2002) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31Google Scholar
  14. Marquis O, Miaud C, Ficetola GF, Boscher A, Mouchet F, Guittonneau S, Devaux A (2009) Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients. Aquat Toxicol 95(2):152–161CrossRefGoogle Scholar
  15. Mateos S, Daza P, Domínguez I, Cárdenas JA, Cortés F (2008) Genotoxicity detected in wild mice living in a highly polluted wetland area in south western Spain. Environ Pollut 153(3):590–593CrossRefGoogle Scholar
  16. McBee K, Bickham JW (1988) Petrol-chemical related DNA damage in wild rodents detected by flow cytometry. Bull Environ Contam Toxicol 40:343–349CrossRefGoogle Scholar
  17. Mitchelmore CL, Chipman JK (1998) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res 399:135–147CrossRefGoogle Scholar
  18. Pavlica M, Klobucar GIV, Mojas N, Erben R, Papes D (2001) Detection of DNA damage in haemocytes of zebra mussel using comet assay. Mutat Res 490:209–214CrossRefGoogle Scholar
  19. Pollet I, Bendell-Young LI (2000) Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent. Environ Toxicol Chem 19:2589–2597CrossRefGoogle Scholar
  20. Ralph S, Petras M (1998) Caged amphibian tadpoles and in situ genotoxicity monitoring of aquatic environments with the alkaline single cell gel electrophoresis (comet) assay. Mutat Res 413:235–250CrossRefGoogle Scholar
  21. Singh NP, Mc-Coy MT, Tice R, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  22. Skelly DK, Freidenburg LK (2000) Effects of beaver on the thermal biology of an amphibian. Ecol Lett 3:483–486CrossRefGoogle Scholar
  23. Tice R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ugur Cengiz Erismis
    • 1
    Email author
  • İbrahim Hakki Ciğerci
    • 1
  • Muhsin Konuk
    • 2
  1. 1.Biology Department, Faculty of Sciences and LiteraturesAfyon Kocatepe UniversityAfyonkarahisarTurkey
  2. 2.Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesÜsküdar UniversityIstanbulTurkey

Personalised recommendations