Skip to main content

Development and Validation of an Analytical Method to Determine Fipronil and its Degradation Products in Soil Samples


The aim of this study was to develop a methodology for identifying and quantifying Fipronil and its degradation products in soil by gas chromatography–electron capture detector previously extracted using a focused ultrasound probe. This methodology was obtaining a range of recovery between 85 % and 120 %, decreasing approximately solvent used time and cost, respect to other methodologies such as bath ultrasonic, solid-phase extraction, liquid–liquid extraction and soxhlet. The method was validated in fortified matrix, presented linearity in the range of 25–400 μg kg−1, and limit of detection for Fipronil and their products desulfinyl, sulfide and sulfone was 14.7, 9.8, 8.9 and 10.7 μg kg−1, respectively. This process was applied to samples of agricultural soils, where two degradation products desulfinyl and sulfone were found.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Aliouane Y, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28(1):113–122

    Article  CAS  Google Scholar 

  2. AOAC/FAO/IAEA/IUPAC (2000) Guidelines for single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals. Available in

  3. Bedient PB, Horsak RD, Schlenk D, Hovinga RM, Pierson JD (2005) Environmental impact of Fipronil to the Louisiana crawfish industry. Environ Forensics 6(3):289–299

    Article  CAS  Google Scholar 

  4. Bobé A, Cooper J-F, Coste CM, Muller M-A (1998) Behaviour of Fipronil in soil under Sahelian Plain field conditions. Pestic Sci 52(3):275–281

    Article  Google Scholar 

  5. Capelo JL, Galesio MM, Felisberto GM, Vaz C, Pessoa JC (2005) Micro-focused ultrasonic solid-liquid extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept. Talanta 66(5):1272–1280

    Article  CAS  Google Scholar 

  6. Chauzat M-P, Faucon J-P, Martel A-C, Lachaize J, Cougoule N, Aubert M (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J Econ Entomol 99(2):253–262

    Article  CAS  Google Scholar 

  7. Cole LM, Nicholson RA, Casida JE (1993) Action of phenylpyrazole insecticides at the gaba-gated chloride channel. Pestic Biochem Physiol 46(1):47–54

    Article  CAS  Google Scholar 

  8. Erney DR, Gillespie AM, Gilvydis DM, Poole CF (1993) Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J Chromatogr A 638(1):57–63

    Article  CAS  Google Scholar 

  9. Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of Fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11(12):1529–1535

    Article  CAS  Google Scholar 

  10. Hajšlová J, Holadová K, Kocourek V, Poustka J, Godula M, Cuhra P, Kempný M (1998) Matrix-induced effects: a critical point in the gas chromatographic analysis of pesticide residues. J Chromatogr A 800(2):283–295

    Article  Google Scholar 

  11. Hayasaka D, Korenaga K, Suzuki K, Saito F, Sanchez-Bayo F, Goka K (2012) Cumulative ecological impacts of two successive annual treatments of imidacloprid and Fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80(2012):355–362

    Article  CAS  Google Scholar 

  12. Horwitz W (1982) Evaluation of analytical methods used for regulation of foods and drugs. Anal Chem 54(1):67A–76A

    Article  CAS  Google Scholar 

  13. Hubaux A, Vos G (1970) Decision and detection limits for calibration curves. Anal Chem 42(8):849–855

    Article  CAS  Google Scholar 

  14. Lin K, Haver D, Oki L, Gan J (2008) Transformation and sorption of fipronil in urban stream sediments. J Agric Food Chem 56(18):8594–8600

    Article  CAS  Google Scholar 

  15. Miller JC, Miller JN (2000) Estadística y quimiometría para química analítica, 3rd edn. Pretice Hall, España

    Google Scholar 

  16. Mohamed F, Senarathna L, Percy A, Abeyewardene M, Eaglesham G, Cheng R, Azher S, Hittarage A, Dissanayake W, Sheriff MHR, Davies W, Buckley NA, Eddleston M (2004) Acute human self-poisoning with the N-Phenylpyrazole insecticide fipronil—a GABAA-gated chloride channel blocker. J Toxicol Clin Toxicol 42(7):955–963

    Article  CAS  Google Scholar 

  17. Mohapatra S, Deepa M, Jagdish G, Rashmi N, Kumar S, Prakash G (2010) Fate of fipronil and its metabolites in/on grape leaves, berries and soil under semi arid tropical climatic conditions. Bull Environ Contam Toxicol 84(5):587–591

    Article  CAS  Google Scholar 

  18. Sanz-Landaluze J, Bocanegra-Salazar M, Ortiz-Pérez D, Cámara C (2010) Miniaturisated method for the analysis of polycyclic aromatic hydrocarbons in leaf samples. J Chromatogr A 1217(22):3567–3574

    Article  CAS  Google Scholar 

  19. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (2012) Available in:

  20. Suslick KS, Cline RE, Hammerton DA (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  21. Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ (2003) Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev Environ Contam Toxicol 176:1–66

    Google Scholar 

  22. Yu C, Hu B (2007) Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography. J Chromatogr A 1160(1–2):71–80

    CAS  Google Scholar 

  23. Zhu G, Wu H, Guo J, Kimaro FME (2004) Microbial Degradation of Fipronil in Clay Loam Soil. Water Air Soil Pollut 153(1–4):35–44

    Article  CAS  Google Scholar 

Download references


R Flores-Ramirez was supported by a fellowship from CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA (CONACyT #20122).

Author information



Corresponding author

Correspondence to R. Flores-Ramírez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flores-Ramírez, R., Batres-Esquivel, L.E., Díaz-Barriga Martínez, F. et al. Development and Validation of an Analytical Method to Determine Fipronil and its Degradation Products in Soil Samples. Bull Environ Contam Toxicol 89, 744–750 (2012).

Download citation


  • Fipronil
  • Degradation products
  • GC–ECD
  • Focused ultrasound probe